Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(16)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38198719

RESUMEN

Controlling and preventing Cu oxidation is crucial for improving the performance and reliability of Cu-Cu bonding. Ni-B films were selectively deposited on Cu films to block the Cu oxidation. The resistivity changes of the Cu films in N2and O2ambient were measured by using a four-point probe in thein situtemperature-dependent resistance measurements at the temperature from room temperature to 400 °C. The resistivity changes of the 100 nm thick Cu films without Ni-B increased rapidly at a higher temperature (284 °C) in the O2ambiance. The change of resistivity-increase of 100 nm thick Cu with ∼50 nm thick Ni-B (top) film was lower than the Cu films without Ni-B films due to the blocking diffusion of O2atoms by the Ni-B films. The resistivity-change and oxidation barrier properties were studied using scanning electron microscopy, FIB, transmission electron microscopy, EDX, and secondary ion mass spectroscopy tools. The proposed article will be helpful for the upcoming advancement in Cu-Cu bonding using selected-area deposition.

2.
Macromol Rapid Commun ; 45(7): e2300647, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38243849

RESUMEN

The rise in universal population and accompanying demands have directed toward an exponential surge in the generation of polymeric waste. The estimate predicts that world-wide plastic production will rise to ≈590 million metric tons by 2050, whereas 5000 million more tires will be routinely abandoned by 2030. Handling this waste and its detrimental consequences on the Earth's ecosystem and human health presents a significant challenge. Converting the wastes into carbon-based functional materials viz. activated carbon, graphene, and nanotubes is considered the most scientific and adaptable method. Herein, this world provides an overview of the various sources of polymeric wastes, modes of build-up, impact on the environment, and management approaches. Update on advances and novel modifications made in methodologies for converting diverse types of polymeric wastes into carbon nanomaterials over the last 5 years are given. A remarkable focus is made to comprehend the applications of polymeric waste-derived carbon nanomaterials (PWDCNMs) in the CO2 capture, removal of heavy metal ions, supercapacitor-based energy storage and water splitting with an emphasis on the correlation between PWDCNMs' properties and their performances. This review offers insights into emerging developments in the upcycling of polymeric wastes and their applications in environment and energy.


Asunto(s)
Metales Pesados , Nanoestructuras , Nanotubos , Humanos , Polímeros , Ecosistema
3.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836283

RESUMEN

Photosensitive polyimides (PSPIs) have been widely developed in microelectronics, which is due to their excellent thermal properties and reasonable dielectric properties and can be directly patterned to simplify the processing steps. In this study, 3 µm~7 µm thick PSPI films were deposited on different substrates, including Si, 50 nm SiN, 50 nm SiO2, 100 nm Cu, and 100 nm Al, for the optimization of the process of integration with Cu films. In situ temperature-dependent resistance measurements were conducted by using a four-point probe system to study the changes in resistance of the 70 nm thick Cu films on different dielectrics with thick diffusion films of 30 nm Mn, Co, and W films in a N2 ambient. The lowest possible change in thickness due to annealing at the higher temperature ranges of 325 °C to 375 °C is displayed, which suggests the high stability of PSPI. The PSPI films show good adhesion with each Cu diffusion barrier up to 350 °C, and we believe that this will be helpful for new packaging applications, such as a 3D IC with a Cu interconnect.

4.
Nanoscale ; 15(23): 9891-9926, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37097309

RESUMEN

Since the discovery of graphene, two-dimensional (2D) materials have gained widespread attention, owing to their appealing properties for various technological applications. Etched from their parent MAX phases, MXene is a newly emerged 2D material that was first reported in 2011. Since then, a lot of theoretical and experimental work has been done on more than 30 MXene structures for various applications. Given this, in the present review, we have tried to cover the multidisciplinary aspects of MXene including its structures, synthesis methods, and electronic, mechanical, optoelectronic, and magnetic properties. From an application point of view, we explore MXene-based supercapacitors, gas sensors, strain sensors, biosensors, electromagnetic interference shielding, microwave absorption, memristors, and artificial synaptic devices. Also, the impact of MXene-based materials on the characteristics of respective applications is systematically explored. This review provides the current status of MXene nanomaterials for various applications and possible future developments in this field.


Asunto(s)
Grafito , Nanoestructuras , Electrónica , Microondas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA