Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Res Sq ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39281856

RESUMEN

Dysfunction of the cerebral cortex is thought to underlie motor and cognitive impairments in Parkinson disease (PD). While cortical function is known to be suppressed by abnormal basal ganglia output following dopaminergic degeneration, it remains to be determined how the deposition of Lewy pathology disrupts cortical circuit integrity and function. Moreover, it is also unknown whether cortical Lewy pathology and midbrain dopaminergic degeneration interact to disrupt cortical function in late-stage. To begin to address these questions, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. Using this model system, we reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern. Particularly, intratelencephalic neurons (ITNs) showed earlier accumulation and greater extent of αSyn aggregates relative to corticospinal neurons (CSNs). Moreover, we demonstrated that the intrinsic excitability and inputs resistance of αSyn aggregates-bearing ITNs in the secondary motor cortex (M2) are increased, along with a noticeable shrinkage of cell bodies and loss of dendritic spines. Last, neither the intrinsic excitability of CSNs nor their thalamocortical input was altered by a partial striatal dopamine depletion associated with αSyn pathology. Our results documented motor cortical neuronal hyperexcitability associated with αSyn aggregation and provided a novel mechanistic understanding of cortical circuit dysfunction in PD.

2.
bioRxiv ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39091827

RESUMEN

Dysfunction of the cerebral cortex is thought to underlie motor and cognitive impairments in Parkinson disease (PD). While cortical function is known to be suppressed by abnormal basal ganglia output following dopaminergic degeneration, it remains to be determined how the deposition of Lewy pathology disrupts cortical circuit integrity and function. Moreover, it is also unknown whether cortical Lewy pathology and midbrain dopaminergic degeneration interact to disrupt cortical function in late-stage. To begin to address these questions, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. Using this model system, we reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern. Particularly, intratelencephalic neurons (ITNs) showed earlier accumulation and greater extent of αSyn aggregates relative to corticospinal neurons (CSNs). Moreover, we demonstrated that the intrinsic excitability and inputs resistance of αSyn aggregates-bearing ITNs in the secondary motor cortex (M2) are increased, along with a noticeable shrinkage of cell bodies and loss of dendritic spines. Last, neither the intrinsic excitability of CSNs nor their thalamocortical input was altered by a partial striatal dopamine depletion associated with αSyn pathology. Our results documented motor cortical neuronal hyperexcitability associated with αSyn aggregation and provided a novel mechanistic understanding of cortical circuit dysfunction in PD.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39052052

RESUMEN

BACKGROUND: The precision of assessment and prognosis in traumatic brain injury (TBI) is paramount for effective triage and informed therapeutic strategies. While the Glasgow Coma Scale (GCS) remains the cornerstone for TBI evaluation, it overlooks critical primary imaging findings. The Helsinki Score (HS), a novel tool designed to incorporate radiological data, offers a promising approach to predicting TBI outcomes. This study aims to evaluate the prognostic efficacy of HS in comparison to GCS across a substantial TBI patient cohort. METHODS: This retrospective study encompassed TBI patients treated at our institution between 2008 and 2019, specifically those with an admission GCS of 14 or lower. We assessed both the initial GCS and the HS derived from primary CT scans. Key outcome metrics included the Glasgow Outcome Scale (GOS) and mortality rates at hospital discharge and at 6 and 12-month intervals post-discharge. Predictive performances of GCS and HS were analyzed through Receiver Operating Characteristic (ROC) curves and Kendall tau-b correlation coefficients against each outcome. RESULTS: The study included 544 patients, with an average age of 62.2 ± 21.5 years, median initial GCS of 14, and a median HS of 3. The mortality rate at discharge stood at 8.6%, with a median GOS of 4. Both GCS and HS demonstrated significant correlations with mortality and GOS outcomes (p < 0.05). Notably, HS showed a markedly superior correlation with mortality (τb = 0.36) compared to GCS (τb = -0.11) and with GOS outcomes (τb = -0.40 for HS vs. τb = 0.33 for GCS). ROC analyses affirmed HS's enhanced predictive accuracy over GCS for both mortality (AUC of 0.79 for HS vs. 0.62 for GCS) and overall outcomes (AUC of 0.77 for HS vs. 0.71 for GCS). CONCLUSION: The findings validate the HS in a large German cohort and suggest that radiological assessments alone, as exemplified by HS, can surpass the traditional GCS in predicting TBI outcomes. However, the HS, despite its efficacy, lacks the integration of clinical evaluation, a vital component in TBI management. This underscores the necessity for a holistic approach that amalgamates both radiological and clinical insights for a more comprehensive and accurate prognostication in TBI care.

4.
STAR Protoc ; 5(3): 103140, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38905103

RESUMEN

Here we present an open-source behavioral platform and software solution for studying fine motor skills in mice performing reach-to-grasp task. We describe steps for assembling the box, training mice to perform the task, and processing the video with the custom software pipeline to analyze forepaw kinematics. The behavioral platform uses readily available and 3D-printed components and was designed to be affordable and universally reproducible. We provide the schematics, 3D models, code, and assembly instructions in the open GitHub repository.


Asunto(s)
Miembro Anterior , Movimiento , Programas Informáticos , Animales , Ratones , Miembro Anterior/fisiología , Fenómenos Biomecánicos/fisiología , Movimiento/fisiología , Destreza Motora/fisiología
5.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38659803

RESUMEN

We present an open-source behavioral platform and software solution for studying fine motor skills in mice performing reach-to-grasp task. The behavioral platform uses readily available and 3D-printed components and was designed to be affordable and universally reproducible. The protocol describes how to assemble the box, train mice to perform the task and process the video with the custom software pipeline to analyze forepaw kinematics. All the schematics, 3D models, code and assembly instructions are provided in the open GitHub repository.

6.
Epilepsy Res ; 195: 107198, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37467703

RESUMEN

BACKGROUND: The timely abortion of status epilepticus (SE) is essential to avoid brain damage and long-term neurodevelopmental sequalae. However, available anti-seizure treatments fail to abort SE in 30% of children. Given the role of the tropomyosin-related kinase B (TrkB) receptor in hyperexcitability, we investigated if TrkB blockade with lestaurtinib (CEP-701) enhances the response of SE to a standard treatment protocol and reduces SE-related brain injury. METHODS: SE was induced with intra-amygdalar kainic acid in postnatal day 45 rats under continuous electroencephalogram (EEG). Fifteen min post-SE onset, rats received intraperitoneal (i.p.) CEP-701 (KCEP group) or its vehicle (KV group). Controls received CEP-701 or its vehicle following intra-amygdalar saline. All groups received two i.p. doses of diazepam, followed by i.p. levetiracetam at 15 min intervals post-SE onset. Hippocampal TrkB dimer to monomer ratios were assessed by immunoblot 24 hr post-SE, along with neuronal densities and glial fibrillary acid protein (GFAP) levels. RESULTS: SE duration was 50% shorter in the KCEP group compared to KV (p < 0.05). Compared to controls, SE induced a 1.5-fold increase in TrkB dimerization in KV rats (p < 0.05), but not in KCEP rats which were comparable to controls (p > 0.05). The KCEP group had lower GFAP levels than KV (p < 0.05), and both were higher than controls (p < 0.05). KCEP and KV rats had comparable hippocampal neuronal densities (p > 0.05), and both were lower than controls (p < 0.05). CONCLUSIONS: Given its established human safety, CEP-701 is a promising adjuvant drug for the timely abortion of SE and the attenuation of SE-related brain injury.


Asunto(s)
Lesiones Encefálicas , Estado Epiléptico , Niño , Humanos , Ratas , Animales , Furanos/efectos adversos , Furanos/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Diazepam/farmacología , Diazepam/uso terapéutico , Lesiones Encefálicas/metabolismo , Hipocampo/metabolismo
7.
Neuromodulation ; 26(8): 1602-1611, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35219569

RESUMEN

OBJECTIVES: Neuropathic pain (NP) is defined as constant disabling pain secondary to a lesion or disease of the somatosensory nervous system. This condition is particularly difficult to treat because it often remains resistant to most treatment strategies. Despite the recent diversification of neurostimulation methods, some patients still suffer from refractory pain syndromes. The central role of the posterior insular cortex (PI) in the modulation of pain signaling and perception has been repeatedly suggested. The objective of this study is to assess whether epidural insular stimulation (IS) could reverse NP behavior. MATERIALS AND METHODS: A total of 53 adult Sprague-Dawley rats received left-sided spared nerve injury (SNI) or Sham-SNI to induce NP symptoms. Afterward, epidural electrodes were implanted over the right PI. After two weeks of postoperative recovery, three groups of SNI-operated rats each received a different stimulation modality: Sham-IS, low-frequency-IS (LF-IS), or high-frequency-IS (HF-IS). Behavioral and functional tests were conducted before and after IS. They comprised the acetone test, pinprick test, von Frey test, and sciatic functional index. An additional LF-IS group received a dose of opioid antagonist naloxone before IS. Intergroup means were compared through independent-samples t-tests, and pre- and post-IS means in the same group were compared through paired t-tests. RESULTS: We found a significant reduction of cold allodynia (p = 0.019), mechanical hyperalgesia (p = 0.040), and functional disability (p = 0.005) after LF-IS but not HF-IS. Mechanical allodynia only showed a tendency to decrease after LF-IS. The observed analgesic effects were reversed by opioid antagonist administration. CONCLUSION: These results suggest a significant reversal of NP symptoms after LF-IS and offer additional evidence that IS might be beneficial in the treatment of resistant NP syndromes through endogenous opioid secretion. Relying on our novel epidural IS model, further fine tuning of stimulation parameters might be necessary to achieve optimal therapeutic effects.


Asunto(s)
Analgésicos Opioides , Neuralgia , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Analgésicos Opioides/uso terapéutico , Antagonistas de Narcóticos/uso terapéutico , Neuralgia/etiología , Neuralgia/terapia , Neuralgia/patología , Hiperalgesia/etiología , Hiperalgesia/terapia , Modelos Animales de Enfermedad
8.
Neuromodulation ; 24(2): 229-239, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33340196

RESUMEN

BACKGROUND: The posterior insula (PI) has been proposed as a potential neurostimulation target for neuropathic pain relief as it represents a key-structure in pain processing. However, currently available data remain inconclusive as to efficient stimulation parameters. OBJECTIVE: As frequency was shown to be the most correlated parameter to pain relief, this study aims to evaluate the potential modulatory effects of low frequency (LF-IS, 50 Hz) and high-frequency (HF-IS, 150 Hz) posterior insular stimulation on the activity of somatosensory thalamic nuclei. MATERIALS AND METHODS: Epidural bipolar electrodes were placed over the PI of healthy adult cats, and extracellular single-unit activities of nociceptive (NS), nonnociceptive (NN), and wide dynamic range (WDR) thalamic cells were recorded within the ventral posterolateral nucleus and the medial division of the thalamic posterior complex. Mean discharge frequency and burst firing mode were analyzed before and after either LF-IS or HF-IS. RESULTS: LF-IS showed a significant thalamic modulatory effects increasing the firing rate of NN cells (p ≤ 0.03) and decreasing the burst firing of NS cells (p ≤ 0.03), independently of the thalamic nucleus. Conversely, HF-IS did not induce any change in firing properties of the three recorded cell types. CONCLUSION: These data indicate that 50 Hz IS could be a better candidate to control neuropathic pain.


Asunto(s)
Señales (Psicología) , Neuralgia , Animales , Gatos , Neuralgia/terapia , Núcleos Talámicos , Tálamo , Núcleos Talámicos Ventrales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA