Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.362
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int Immunopharmacol ; 140: 112803, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094357

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) leads to excessive deposition of fibrous connective tissue in the lungs, increasing the risk of lung cancer due to the enhanced activity of fibroblasts (FBs). Fibroblast-mediated collagen fiber deposition creates a tumor-like microenvironment, laying the foundation for tumorigenesis. Clinically, numerous cases of lung cancer induced by pulmonary fibrosis have been observed. In recent years, the study of nucleotide point mutations, which provide more detailed insights than gene expression, has made significant advancements, offering new perspectives for clinical research. METHODS: We initially employed Mendelian randomization to ascertain that the initial stage of lung cancer induced by PF belongs to small cell lung cancer (SCLC). Subsequently, pulmonary neuroendocrine cells (PNECs) were identified by using pseudo-time series analysis as cell clusters with carcinogenic potential. We categorized FBs into four groups according to their cellular metabolism, and then analyzed the cellular communication between FBs and PNECs, as well as changes in intracellular pathways of PNECs. Additionally, we examined the characteristic genome of FBs which is significantly associated with PF and investigated the impact of FBs on immune cells in the PF microenvironment. Finally, we explored strategies for preventing the progression from PF to lung cancer. RESULTS: The genetic features of cells with carcinogenic potential in PF tissues were revealed, characterized by upregulation of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), Homeobox B2 (HOXB2), Teashirt Zinc Finger Homeobox 2 (TSHZ2), Insulinoma-associated 1 (INSM1), and reduced activity of RE1 Silencing Transcription Factor (REST). FBs characterized by high glycolysis and low tricarboxylic acid (TCA) cycling played a key role in the progression of PF. The microenvironment of PF resembles the tumor microenvironment, providing a conducive immunosuppressive environment for the occurrence of cancer cells. In dendritic cells, rs9265808 is a susceptibility locus for progression from pulmonary fibrosis to lung cancer, mutations at this locus increase the expression of Complement Factor B (CFB), and excessive activation of the complement pathway is a crucial factor leading to lung cancer development in patients with pulmonary fibrosis. Ensuring adequate nutritional supply and physical function is one of the effective measures to prevent progression from pulmonary fibrosis to lung cancer. CONCLUSION: CFB promotes lung cancer occurrence by inducing the accumulation and polarization of a large number of monocytes/macrophages in the lungs, driving disease progression by reducing the physical fitness of patients with pulmonary fibrosis.

2.
J Vasc Access ; : 11297298241263891, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097784

RESUMEN

The total occlusion of radial artery is a contraindication for reintervention and further usage. In this study, we report successful revascularization with creation of radiocephalic fistula from post-procedural chronically-occluded radial artery. The completely occluded radial artery was recanalized through ultrasound guided balloon angioplasty. A traditional radiocephalic fistula was created subsequently by using the recanalized radial artery for hemodialysis therapy. Though the fistula was failed at the 6 weeks caused by the juxta anastomotic stenosis, the further ultrasound guided percutaneous transluminal angioplasty restored the blood, and the hemodialysis therapy lasts for more than 1 year so far. It's feasible to create radiocephalic fistula based on the recanalized radial artery and maintain long-term hemodialysis therapy.

3.
Cogn Neurodyn ; 18(4): 2003-2013, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104674

RESUMEN

The role of network metrics in exploring brain networks of mental illness is crucial. This study focuses on quantifying a node controllability index (CA-scores) and developing a novel framework for studying the dysfunction of attention deficit hyperactivity disorder (ADHD) brains. By analyzing fMRI data from 143 healthy controls and 102 ADHD patients, the controllability metric reveals distinct differences in nodes (brain regions) and subsystems (functional modules). There are significantly atypical CA-scores in the Rolandic operculum, superior medial orbitofrontal cortex, insula, posterior cingulate gyrus, supramarginal gyrus, angular gyrus, precuneus, heschl gyrus, and superior temporal gyrus of ADHD patients. A comparison with measures of connection strength, eigenvector centrality, and topology entropy suggests that the controllability index may be more effective in identifying abnormal regions in ADHD brains. Furthermore, our controllability index could be extended to investigate functional networks associated with other psychiatric disorders. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-10063-z.

4.
Small Methods ; : e2400519, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39108187

RESUMEN

The development of nanomaterials for energy storage and conversion has always been important. Layered double hydroxide (LDH) is a promising material due to its high capacity, tunable composition and easy synthesis. In this work, the morphology of NiCo-LDH is tuned with surfactants including sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), and investigated the correlation between morphology and electrochemical properties. NiCo-LDH-SDS with a layered structure exhibited a specific capacitance of 1004 C g-1 at 1 A g-1, which is higher than that of the needle-like NiCo-LDH-CTAB (678 C g-1) and the rod-like NiCo-LDH (279 C g-1). Meanwhile, NiCo-LDH-SDS and NiCo-LDH-CTAB showed a reduction of 36 and 19 mV, respectively, in their overpotentials at 10 mA cm-2 compared to NiCo-LDH. Contact angle and adhesive force measurements proved the influence of morphology on the interfacial properties that layered structure is favorable for the timely detachment of the bubbles. Therefore, rational morphology regulation of LDH can effectively alter the gas-liquid-solid interface and thereby accelerate the reaction kinetics. The connections between morphologies, bubbles releasing and electrochemical performance are well established in this work, which can be applied in the investigation of nanomaterials for energy-related activities, especially the ones concerning bubbles releasing processes.

5.
Nat Commun ; 15(1): 6626, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103353

RESUMEN

N-Myc is a key driver of neuroblastoma and neuroendocrine prostate cancer (NEPC). One potential way to circumvent the challenge of undruggable N-Myc is to target the protein homeostasis (proteostasis) system that maintains N-Myc levels. Here, we identify heat shock protein 70 (HSP70) as a top partner of N-Myc, which binds a conserved "SELILKR" motif and prevents the access of E3 ubiquitin ligase, STIP1 homology and U-box containing protein 1 (STUB1), possibly through steric hindrance. When HSP70's dwell time on N-Myc is increased by treatment with the HSP70 allosteric inhibitor, STUB1 is in close proximity with N-Myc and becomes functional to promote N-Myc ubiquitination on the K416 and K419 sites and forms polyubiquitination chains linked by the K11 and K63 sites. Notably, HSP70 inhibition significantly suppressed NEPC tumor growth, increased the efficacy of aurora kinase A (AURKA) inhibitors, and limited the expression of neuroendocrine-related pathways.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Neoplasias de la Próstata , Proteostasis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Línea Celular Tumoral , Animales , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Ratones , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/patología , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología
6.
Artículo en Inglés | MEDLINE | ID: mdl-39158678

RESUMEN

BACKGROUND AND OBJECTIVES: Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research. METHODS: Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability  study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1. RESULTS: The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (Cmax) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (Tmax) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC0-t) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC0-∞) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t1/2) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h). CONCLUSIONS: TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t1/2. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.

7.
ACS Omega ; 9(32): 34196-34219, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157135

RESUMEN

Since 2019, the novel coronavirus (SARS-CoV-2) has caused significant morbidity and millions of deaths worldwide. The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2 and its variants, has further highlighted the urgent need for the development of effective therapeutic agents. Currently, the highly conserved and broad-spectrum nature of main proteases (Mpro) renders them of great importance in the field of inhibitor study. In this study, we categorize inhibitors targeting Mpro into three major groups: mimetic, nonmimetic, and natural inhibitors. We then present the research progress of these inhibitors in detail, including their mechanism of action, antiviral activity, pharmacokinetic properties, animal experiments, and clinical studies. This review aims to provide valuable insights and potential avenues for the development of more effective antiviral drugs against SARS-CoV-2.

8.
J Am Chem Soc ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162360

RESUMEN

Facet control and phase engineering of metal nanomaterials are both important strategies to regulate their physicochemical properties and improve their applications. However, it is still a challenge to tune the exposed facets of metal nanomaterials with unconventional crystal phases, hindering the exploration of the facet effects on their properties and functions. In this work, by using Pd nanoparticles with unconventional hexagonal close-packed (hcp, 2H type) phase, referred to as 2H-Pd, as seeds, a selective epitaxial growth method is developed to tune the predominant growth directions of secondary materials on 2H-Pd, forming Pd@NiRh nanoplates (NPLs) and nanorods (NRs) with 2H phase, referred to as 2H-Pd@2H-NiRh NPLs and NRs, respectively. The 2H-Pd@2H-NiRh NRs expose more (100)h and (101)h facets on the 2H-NiRh shells compared to the 2H-Pd@2H-NiRh NPLs. Impressively, when used as electrocatalysts toward hydrogen oxidation reaction (HOR), the 2H-Pd@2H-NiRh NRs show superior activity compared to the NiRh alloy with conventional face-centered cubic (fcc) phase (fcc-NiRh) and the 2H-Pd@2H-NiRh NPLs, revealing the crucial role of facet control in enhancing the catalytic performance of unconventional-phase metal nanomaterials. Density functional theory (DFT) calculations further unravel that the excellent HOR activity of 2H-Pd@2H-NiRh NRs can be attributed to the more exposed (100)h and (101)h facets on the 2H-NiRh shells, which possess high electron transfer efficiency, optimized H* binding energy, enhanced OH* binding energy, and a low energy barrier for the rate-determining step during the HOR process.

9.
Res Sq ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39184098

RESUMEN

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (20,000 cycles at 20% strain) with a stretchability of 64.5 ± 7.9%, and low electrochemical impedance (900 ± 149 kΩ @ 1kHz). We observe the re-constructed nanofillers' axial alignment and a corresponding anisotropic impedance decrease along the direction of cyclic stretching. We fabricate fiber-shaped hydrogels into bioelectronic devices and implant them into wild-type and transgenic Thy1-ChR2-EYFP mice to record electromyographic signals from muscles in anesthetized and freely moving conditions. These hydrogel fibers effectively enable the simultaneous recording of electrical signals from ventral spinal cord neurons and the tibialis anterior muscles during optogenetic stimulation. Importantly, the devices maintain functionality with repeatable recording results over eight months after implantation, demonstrating their durability and potential for long-term monitoring in neurophysiological studies.

10.
Transl Psychiatry ; 14(1): 343, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183315

RESUMEN

Currently, there is still debate over the effectiveness of transcranial direct current stimulation (tDCS) in treating obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD) and anxiety disorders (ADs). To investigate the immediate and long-term effectiveness of tDCS in these diseases, we conducted a systematic review and quantitative analysis of existing literature on the treatment of OCD, PTSD, and ADs with tDCS. Following the PRISMA guidelines, we searched seven electronic databases and systematically retrieved articles published from May 2012 to June 2024 that compared the effects of active tDCS with sham stimulation in the treatment of these disorders. We included primary outcome measures such as the change scores in disorder-specific and general anxiety symptoms before and after treatment, as well as secondary outcomes such as changes in disorder-specific and general anxiety symptoms at follow-up. We also assessed the impact of tDCS on depressive symptoms. Fifteen papers met the eligibility criteria. Overall, the results of meta-analysis indicated that tDCS had a high effect in improving specific symptoms (SMD = -0.73, 95% CI: -1.09 to -0.37) and general anxiety symptoms (SMD = -0.75; 95% CI: -1.23 to -0.26) in OCD, PTSD and ADs, with effects lasting up to 1 month and showing a moderate effect size. Furthermore, tDCS demonstrated immediate and significant alleviation of depressive symptoms in these diseases. This study concludes that tDCS can serve as a non-invasive brain stimulation technology for treating these disorders, and the therapeutic effects can be maintained for a period of time.


Asunto(s)
Trastornos de Ansiedad , Trastorno Obsesivo Compulsivo , Trastornos por Estrés Postraumático , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Trastornos por Estrés Postraumático/terapia , Trastorno Obsesivo Compulsivo/terapia , Trastornos de Ansiedad/terapia , Resultado del Tratamiento
11.
Commun Biol ; 7(1): 972, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122786

RESUMEN

Dental pulp stem cells (DPSC) have shown osteogenic and bone regenerative potential. Improving the in situ bone regeneration potential of DPSC is crucial for their application as seed cells during bone defect reconstruction in clinics. This study aimed to develop DPSC-derived organoid-like microspheroids as effective seeds for bone tissue engineering applications. DPSC osteogenic microspheroids (70 µm diameter) were cultured in a polydimethylsiloxane-mold-based agarose-gel microwell-culture-system with or without cannabidiol (CBD)-treatment. Results of in vitro studies showed higher osteogenic differentiation potential of microspheroids compared with 2D-cultured-DPSC. CBD treatment further improved the osteogenic differentiation potential of microspheroids. The effect of CBD treatment in the osteogenic differentiation of microspheroids was more pronounced compared with that of CBD-treated 2D-cultured-DPSC. Microspheroids showed a higher degree of bone regeneration in nude mice calvarial bone defect compared to 2D-cultured-DPSC. CBD-treated microspheroids showed the most robust in situ bone regenerative potential compared with microspheroids or CBD-treated 2D-cultured-DPSC. According to mRNA sequencing, bioinformatic analysis, and confirmation study, the higher osteogenic potential of CBD-treated microspheroids was mainly attributed to WNT6 upregulation. Taken together, DPSC microspheroids have robust osteogenic potential and can effectively translate the effect of in vitro osteoinductive stimulation during in situ bone regeneration, indicating their application potential during bone defect reconstruction in clinics.


Asunto(s)
Cannabidiol , Diferenciación Celular , Pulpa Dental , Osteogénesis , Células Madre , Regulación hacia Arriba , Osteogénesis/efectos de los fármacos , Animales , Cannabidiol/farmacología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Ratones , Regulación hacia Arriba/efectos de los fármacos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/metabolismo , Humanos , Ratones Desnudos , Células Cultivadas , Regeneración Ósea/efectos de los fármacos
12.
Sci Adv ; 10(32): eadl6398, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110786

RESUMEN

The growing interest in cost-effective and high-performing perovskite solar cells (PSCs) has driven extensive research. However, the challenge lies in upscaling PSCs while maintaining high performance. This study focuses on achieving uniform and compact perovskite films without pinholes and interfacial voids during upscaling from small PSCs to large-area modules. Competition in nucleation at concavities with various angles on rough-textured substrates during the gas-pumping drying process, coupled with different drying rates across the expansive film, aggravates these issues. Consequently, substrate roughness notably influences the deposition window of compact large-area perovskite films. We propose a supersaturation regulation approach aimed at achieving compact deposition of high-quality perovskite films over large areas. This involves introducing a rapid drying strategy to induce a high-supersaturation state, thereby equalizing nucleation across diverse concavities. This breakthrough enables the production of perovskite photovoltaics with high efficiencies of 25.58, 21.86, and 20.62% with aperture areas of 0.06, 29, and 1160 square centimeters, respectively.

13.
Front Genet ; 15: 1430885, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130746

RESUMEN

Background: Mitochondrial dysfunction has been shown to play a critical role in cancer biology. However, its involvement in intrahepatic cholangiocarcinoma (iCCA) remains significantly understudied. Methods: RNA sequencing data of 30 pairs of iCCA and paracancerous tissues were collected from the First Affiliated Hospital of Wenzhou Medical University (WMU). The WMU cohort (n = 30) was integrated with public TCGA (n = 30) and GSE107943 (n = 30) datasets to establish a multi-center iCCA cohort. We merged the TCGA and GSE107943 cohorts into an exploration cohort to develop a mitochondria signature for prognosis assessment, and utilized the WMU cohort for external validation. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Hallmarker analyses were used for functional interpretation of iCCA associated mitochondria-related genes (MRGs). In addition, unsupervised clustering was performed to identify mitochondria-based iCCA subtypes with the data of three institutions. Further investigations were conducted to examine the impact of mitochondrial dysfunction on drug responses, alteration of the tumor immune microenvironment, and immune responses. Results: Two hundred and sixty-three iCCA-related MRGs were identified to be related to fatty acid metabolism, oxidative phosphorylation, and apoptosis. Through univariate and multivariate Cox, and LASSO analyses, a mitochondria signature with five optimal MRGs was established to evaluate the prognosis of iCCA patients with the AUC values ranged from 0.785 to 0.928 in the exploration cohort. The signature also exhibited satisfactory performance in the WMU cohort with AUC values of 0.817-0.871, and was identified as an independent risk predictor in both cohorts. Additionally, we found that patients with higher mitochondria score with poor prognosis presented lower infiltration levels of CD4+ T-cell, NK cells, and monocytes, and demonstrated higher sensitivity to targeted therapies, including sorafenib. Furthermore, two distant mitochondria-based subtypes were determined, and subtype 2 was associated with shorter survival time and immunosuppressive tumor microenvironment. Finally, the differential protein expression of five key MRGs was verified by Immunohistochemistry. Conclusion: We found mitochondrial dysfunction modulates aberrant metabolism, oxidative stress, immune responses, apoptosis, and drug sensitivity in iCCA. A mitochondria signature and two mitochondria-based iCCA subtypes were identified for clinical risk stratification and immunophenotyping.

14.
J Hepatocell Carcinoma ; 11: 1481-1493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131509

RESUMEN

Purpose: This study evaluated the clinical outcomes of patients with hepatocellular carcinoma (HCC) with hepatic vein tumor thrombus (HVTT) and/or inferior vena cava tumor thrombus (IVCTT) receiving radiotherapy (RT) combined with systemic therapies. Patients and Methods: Patients with HCC with HVTT and/or IVCTT who received RT were identified at our institution. The prescription doses were 30-65 Gy for planning target volume and 40-65 Gy for the gross tumor volume. Targeted therapy and immune checkpoint inhibitors were used concurrently if patients were at a high risk of or already had distant metastasis. After RT completion, follow-up was performed at 1, 3, 6, and 12 months, and 3 to 6 months thereafter. The objective response rate (ORR), overall survival (OS), progression-free survival (PFS) and toxicity were recorded. Results: Thirty-four patients were retrospectively enrolled between January 2016 and September 2021. Most patients received concurrent targeted therapy (70.6%) and/or post-RT (79.4%). The in-field ORR and disease control rates were 79.4% and 97.1%, respectively. The OS rates were 77.6% at 1 year and 36.3% at 2 years (median OS, 15.8 months). The median PFS and median in-field PFS were 4.2 months and not reached, respectively. The PFS and in-field PFS rates were 24.6% and 79.2% at 1 year, 19.7% and 72.0% at 2 years, respectively. An alpha-fetoprotein level >1000 ng/mL was a significant prognostic factor for worse OS (HR, 5.674; 95% CI, 1.588-20.276; p=0.008); in-field complete/partial response was a significant prognostic factor for better OS (HR, 0.116; 95% CI, 0.027-0.499; p=0.004). The most common site of first failure was the lungs (13/34 patients, 38.2%), followed by the liver (7/34 patients, 20.6%). No patients developed radiation-induced liver disease or pulmonary embolism during follow-up. Conclusion: Combining RT and systemic therapy was safe and effective in treating patients with HCC with HVTT and IVCTT.

15.
Clin Exp Med ; 24(1): 185, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133334

RESUMEN

PURPOSE: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy have demonstrated significant clinical benefits in progression-free and overall survival. This study investigates the outcomes associated with two kinds of CDK4/6i in patients with hormone receptor (HR)-positive metastatic and relapsed breast cancer to inform real-world evidence of treatment strategies. METHODS: This retrospective study included 340 Taiwanese patients with HR-positive advanced breast cancer from the Taipei Veterans General Hospital, between 2018 and 2023. We analyzed patient characteristics, treatment strategies and outcomes associated with two CDK4/6i. The efficacy of patients who experienced economic burden and interrupted CDK4/6i treatment after 2 years of National Health Insurance (NHI) reimbursement was also investigated. RESULTS: Patients receiving ribociclib and palbociclib showed no significant differences in age, histology, body mass index(BMI), or pathologic status. The distribution of disease status and endocrine therapy partners was comparable between the two groups. Dose reduction was similar, while patients with palbociclib tended to discontinue CDK4/6i usage, and those with ribociclib tended to switch to the other CDK4/6i or endocrine partners. There was no significant difference in progression-free survival (PFS) between the two CDK4/6i in the first-line setting. Adverse prognostic factors were increasing HER2 IHC score, higher Ki-67 levels, visceral and liver metastasis, prior chemotherapy, and endocrine therapy resistance, while higher BMI, bone-only metastasis, and letrozole treatment were associated with a lower risk of progression. The limited follow-up time in our study was insufficient to assess the outcomes of patients treated with interrupted CDK4/6i for up to two years under the NHI reimbursement policy. CONCLUSION: Treatment outcomes between the two types of CDK4/6i did not differ significantly, indicating the safety and efficacy of CDK4/6i for the Asian population. Ribociclib and palbociclib showed similar efficacy in PFS in the real-world setting.


Asunto(s)
Aminopiridinas , Neoplasias de la Mama , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Piperazinas , Inhibidores de Proteínas Quinasas , Purinas , Piridinas , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Persona de Mediana Edad , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Piridinas/uso terapéutico , Estudios Retrospectivos , Anciano , Piperazinas/uso terapéutico , Aminopiridinas/uso terapéutico , Purinas/uso terapéutico , Taiwán , Inhibidores de Proteínas Quinasas/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adulto , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Resultado del Tratamiento , Metástasis de la Neoplasia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Pueblo Asiatico
16.
Mult Scler Relat Disord ; 90: 105814, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39151237

RESUMEN

BACKGROUND: Seasonal variation in attacks of acute disseminated encephalomyelitis (ADEM1) is reported in some studies. Myelin oligodendrocyte glycoprotein (MOG) antibodies are found in up to 50 % of ADEM cases. Despite this, there has been no adequately powered study of seasonality in MOG antibody-associated disease (MOGAD). We sought to determine whether there was an effect of season on incidence of total attacks and onset attacks of MOGAD. METHODS: We searched the large national Oxford-based NMO Service database to identify attacks of MOGAD occurring between 2010 and 2021. Month of each attack was extracted and Edwards' test of seasonal variation was applied to determine whether there was a seasonal effect on total attacks and onset attacks. RESULTS: Neither incidence of total attacks nor incidence of onset attacks varied significantly by month. CONCLUSION: There is no evidence of seasonal fluctuations in the incidence of MOGAD attacks in the UK.

17.
Artículo en Inglés | MEDLINE | ID: mdl-39152615

RESUMEN

OBJECTIVE: The objective of this study was to investigate the activity and connectivity of cerebral and cerebellar cortices underlying the sensory trick (ST) effects in patients with cervical dystonia (CD), using electroencephalography (EEG). METHODS: We recruited 15 CD patients who exhibited clinically effective ST and 15 healthy controls (HCs) who mimicked the ST maneuver. EEG signals and multiple-channel electromyography (EMG) were recorded simultaneously during resting and acting stages. EEG source analysis and functional connectivity were performed. To account for the effects of sensory processing, we calculated relative power changes as the difference in power spectral density between resting and the maneuver execution. RESULTS: ST induced a decrease in low gamma (30-50 Hz) spectral power in the primary sensory and cerebellar cortices, which remained lower than in HCs during the maintenance period. Compared with HCs, patients exhibited consistently strengthened connectivity within the sensorimotor network during the maintenance period, particularly in the primary sensory-sensorimotor cerebellum connection. INTERPRETATION: The application of ST resulted in altered cortical excitability and functional connectivity regulated by gamma oscillation in CD patients, suggesting that this effect cannot be solely attributed to motor components. The cerebellum may play important roles in mediating the ST effects.

18.
Arch Dermatol Res ; 316(8): 527, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153095

RESUMEN

BACKGROUND AND OBJECTIVE: Adipose-derived mesenchymal stem cells (ADSCs) can accelerate wound healing, reduce scar formation, and inhibit hypertrophic scar (HTS). ADSCs can secrete a large amount of CCL5, and CCL5 has been proved to be pro-inflammatory and pro-fibrotic. CXCL12 (SDF-1) is a key chemokine that promotes stem cell migration and survival. Therefore, this study selected normal skin and HTS conditioned medium to simulate different microenvironments, and analyzed the effects of different microenvironments on the expression of CCL5 and CXCL12 in human ADSCs (hADSCs). MATERIALS AND METHODS: hADSCs with silenced expression of CCL5 and CXCL12 were co-cultured with hypertrophic scar fibroblasts to verify the effects of CCL5 and CXCL12 in hADSCs on the proliferation ability of hypertrophic scar fibroblasts. A mouse model of hypertrophic scar was established to further confirm the effect of CCL5 and CXCL12 in hADSCs on hypertrophic scar formation. RESULTS: CCL5 level was found to be significantly high in hADSCs cultured in HTS conditioned medium. CXCL12 in HTS group was prominently lowly expressed compared with the normal group. Inhibition of CCL5 in hADSCs enhanced the effects of untreated hADSCs on proliferation of HTS fibroblasts while CXCL12 knockdown exerted the opposite function. Inhibition of CCL5 in hADSCs increased the percentage of HTS fibroblasts in the G0/G1 phase while down-regulation of CXCL12 decreased those. Meanwhile, the down-regulated levels of fibroblast markers including collagen I, collagen III, and α-SMA induced by CCL5 knockdown were significantly up-regulated by CXCL12 inhibition. hADSCs alleviate the HTS of mice through CCL5 and CXCL12. CONCLUSION: In summary, our results demonstrated that hADSCs efficiently cured HTS by suppressing proliferation of HTS fibroblasts, which may be related to the inhibition of CXCL12 and elevation of CCL5 in hADSCs, suggesting that hADSCs may provide an alternative therapeutic approach for the treatment of HTS.


Asunto(s)
Proliferación Celular , Quimiocina CCL5 , Quimiocina CXCL12 , Cicatriz Hipertrófica , Fibroblastos , Células Madre Mesenquimatosas , Quimiocina CCL5/metabolismo , Fibroblastos/metabolismo , Humanos , Cicatriz Hipertrófica/patología , Cicatriz Hipertrófica/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Quimiocina CXCL12/metabolismo , Ratones , Modelos Animales de Enfermedad , Células Cultivadas , Femenino , Medios de Cultivo Condicionados/farmacología , Técnicas de Cocultivo , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Adulto , Cicatrización de Heridas , Tejido Adiposo/citología
19.
ACS Nano ; 18(33): 21975-21984, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39115423

RESUMEN

Promotion of oxygen reduction reaction (ORR) kinetics, to a large extent, depends on the rational modulation of the electronic structure and mass diffusion of electrocatalysts. Herein, a ferrocene (Fc)-assisted strategy is developed to prepare Fc-trapped ZnMo-hybrid zeolitic imidazolate framework (Fc@ZnMo-HZIF-50) and the derived Fe single atom coupling with MoC nanoparticles, coembedded in hierarchically porous N-doped carbon cubes (MoC@FeNC-50). The introduced Fc is utilized not only as an iron source for single atoms but also as a morphology regulator for generating a hierarchically porous structure. The redistribution of electrons between Fe single atoms and MoC nanoparticles effectively promotes the adsorption of O2 and the formation of *OOH intermediates during the ORR process. Along with a 3D hierarchically porous architecture for enhanced mass transport, the as-fabricated MoC@FeNC-50 presents excellent activity (E1/2 = 0.83 V) and durability (only 9.5% decay in current after 40000 s). This work could inspire valuable insights into the construction of efficient electrocatalysts through electron configuration and kinetics engineering.

20.
Heliyon ; 10(14): e34484, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148981

RESUMEN

Hepatocellular carcinoma (HCC) is the major cause of cancer-associated mortality worldwide. Despite great advances have been made on the treatment of HCC, the survival rate of patients remains poor. Spindle apparatus coiled-coil protein 1 (SPDL1) is involved in the development of various cancers in humans. However, the role of SPDL1 in HCC remains unclear. In this study, we found high expression of SPDL1 in HCC tissues as compared to normal samples. In vitro, silencing of SPDL1 induced HCC cell apoptosis, and suppressed HCC cell propagation and migration. In vivo, knockdown of SPDL1 inhibited the tumor growth of HCC cells. These findings indicated the tumor-promoting role of SPDL1 in HCC. Mechanistically, we identified farnesyltransferase-beta (FNTB) as the downstream target protein of SPDL1 based on immunoprecipitation and mass spectrometry, which were confirmed by western blotting. Rescue assay determined that FNTB played a tumor promoting role in SPDL1-trigger HCC cell growth. Overexpression of FNTB recovered HCC cell viability and migration in SPDL1 knockdown cells. We also found that silencing of SPDL1 increased the sensitivity of Huh7 cells to sorafenib and lenvatinib, suggesting that SPDL1 is a new therapeutic target in HCC. Collectivity, the present study identified a new axis SPDL1/FNTB involved in the progression of HCC. Hence, SPDL1/FNTB is a potential target for the treatment of HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA