Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Cardiovasc Med ; 11: 1342686, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562191

RESUMEN

Background: Iron deficiency (ID) is the most common nutritional deficiency, with little research on its prevalence and long-term outcomes in the general population and those with heart failure (HF). Both the relationships between dietary iron and ID, as well as dietary folate and ID, are understudied. Methods: We used data from the National Health and Nutrition Examination Survey from 1999 to 2002 to investigate the prevalence, prognosis, and relationship between dietary and ID defined by different criteria in the general population (n = 6,660) and those with HF (n = 182). Results: There was no significant difference in the prevalence of ID between HF patients and the general population after propensity score matching. Transferrin saturation (TSAT) <20% was associated with higher 5-year all-cause mortality (HR: 3.49, CI: 1.40-8.72, P = 0.007), while ferritin <30 ng/ml was associated with higher 10-year (HR: 2.70, CI: 1.10-6.67, P = 0.031) and 15-year all-cause mortality (HR: 2.64, CI: 1.40-5.00, P = 0.003) in HF patients. Higher dietary total folate but dietary iron reduced the risk of ID (defined as ferritin <100 ng/ml) in HF patients (OR: 0.80; 95% CI: 0.65-1.00; P = 0.047). Conclusions: The prevalence of ID was identical in HF and non-HF individuals. Ferritin <30 ng/ml was associated with long-term outcomes whereas TSAT <20% was associated with short-term prognosis in both the general population and HF patients. A diet rich in folate might have the potential for prevention and treatment of ID in HF patients.

2.
Thromb J ; 22(1): 23, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429631

RESUMEN

BACKGROUND AND OBJECTIVE: Left ventricular thrombus (LVT) formation in patients with acute myocardial infarction (AMI) or cardiomyopathies is not uncommon. The optimal oral anticoagulation therapy for resolving LVT has been under intense debate. Vitamin K antagonists (VKAs) remain the anticoagulant of choice for this condition, according to practice guidelines. Evidence supporting the use of direct oral anticoagulants (DOACs) in the management of LVT continues to grow. We performed a systematic review and meta-analysis to compare the efficacy and safety of DOACs versus VKAs. METHODS: A comprehensive literature search was carried out in PubMed, Cochrane Library, Web of Science, Embase, and Scopus databases in July 2023. The efficacy outcomes of this study were thrombus resolution, ischemic stroke, systemic embolism, stroke/systemic embolism, all-cause mortality, and adverse cardiovascular events. The safety outcomes were any bleeding, major bleeding, and intracranial hemorrhage. A total of twenty-seven eligible studies were included in the meta-analysis. Data were analyzed utilizing Stata software version 15.1. RESULTS: There was no significant difference between DOACs and VKAs with regard to LVT resolution (RR = 1.00, 95% CI 0.95-1.05, P = 0.99). In the overall analysis, DOACs significantly reduced the risk of stroke (RR = 0.74, 95% CI 0.57-0.96, P = 0.021), all-cause mortality (RR = 0.70, 95% CI 0.57-0.86, P = 0.001), any bleeding (RR = 0.75, 95% CI 0.61-0.92, P = 0.006) and major bleeding (RR = 0.67, 95% CI 0.52-0.85, P = 0.001) when compared to VKAs. Meanwhile, in the sub-analysis examining randomized controlled trials (RCTs), the aforementioned outcomes no longer differed significantly between the DOACs and VKAs groups. The incidences of systemic embolism (RR = 0.81, 95% CI 0.54-1.22, P = 0.32), stroke/systemic embolism (RR = 0.85, 95% CI 0.72-1.00, P = 0.056), intracranial hemorrhage (RR = 0.59, 95% CI 0.23-1.54, P = 0.28), and adverse cardiovascular events (RR = 0.99, 95% CI 0.63-1.56, P = 0.92) were comparable between the DOACs and VKAs groups. A subgroup analysis showed that patients treated with rivaroxaban had a significantly lower risk of stroke (RR = 0.24, 95% CI 0.08-0.72, P = 0.011) than those in the VKAs group. CONCLUSION: With non-inferior efficacy and superior safety, DOACs are promising therapeutic alternatives to VKAs in the treatment of LVT. Further robust investigations are warranted to confirm our findings.

3.
Plants (Basel) ; 12(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38068702

RESUMEN

Kenaf (Hibiscus cannabinus L.) is considered suitable for the remediation of cadmium (Cd)-contaminated farmlands, because of its large biomass and resistance to Cd stress. The addition of nitrogen (N) fertilizer is an important measure used to increase crop yields, and it may also affect Cd accumulation in plants. To clarify the effects of different forms and concentrations of N on plant growth and Cd absorption in kenaf, a hydroponic experiment was conducted using three N forms (NH4+-N, NO3--N and urea-N) at four concentrations (0, 2, 4 and 8 mM, 0 mM as control) under Cd stress (30 µM). The plant growth, the antioxidant enzyme activity and the Cd contents of various parts of the kenaf seedlings were measured. The results showed that the N form had the greatest impact on the growth of the kenaf and the absorption and transport of the Cd, followed by the interaction effect between the N type and the concentration. Compared to the control, the addition of N fertilizer promoted the growth of kenaf to varying degrees. Among all the treatments, the use of 2 mM of NO3--N enhanced the biomass and Cd accumulation to the greatest extent compared to CK from 2.02 g to 4.35 g and 341.30 µg to 809.22 µg per plant, respectively. The NH4+-N significantly reduced the Cd contents of different parts but enhanced the translocation factors of Cd stem to root (TF S/R) and leaf to stem (TF L/S) by 34.29~78.57% and 45.10~72.55%, respectively. The peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) enzyme activities of the kenaf increased with the N treatments, especially with NH4+-N. Overall, applying low concentrations of NO3--N can better promote the extraction of Cd by kenaf.

4.
Angew Chem Int Ed Engl ; 62(38): e202308702, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37471502

RESUMEN

Extraction and recovery of lithium from reserves play a critical role in the sustainable development of energy due to the explosive growth of the lithium-battery market. However, the low efficiency of extraction and recovery seriously threatens the sustainability of lithium supply. In this contribution, we fabricate a novel mechanically robust fluorine-rich hydrogel, showing highly efficient Li+ extraction from Li-containing solutions. The hydrogel was facilely fabricated by simple one-pot polymerization of supramolecular nanosheets of fluorinated monomers, acrylic acid and a small amount of chemical crosslinkers. The hydrogel exhibits a remarkable lithium adsorption capacity (Qm Li+ =122.3 mg g-1 ) and can be reused. Moreover, it can exclusively extract lithium ions from multiple co-existing metal ions. Notably, the separation of Li+ /Na+ in actual wastewater is achieved with a surprising separation factor of 153.72. The detailed characterizations as well as calculation showed that the specific coordination of Li-F plays a central role for both of the striking recovery capability and selectivity for Li+ . Furthermore, an artificial device was constructed, displaying high efficiency of extracting lithium in various complex actual lithium-containing wastewater. This work provides a new and promising avenue for the efficient extraction and recovery of lithium resource from complex lithium-containing solutions.

5.
Nanomicro Lett ; 15(1): 143, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37266746

RESUMEN

The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings. This work shows a hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites by a two-step straightforward method. Single-atomic W can be found on the carbon surface, which can form protonic acid sites and establish an extended proton transport network at the catalyst surface. When implemented in membrane electrode assembly as cathode at ultra-low loading of 0.05 mgPt cm-2, the peak power density of the cell is enhanced by 64.4% compared to that with the commercial Pt/C catalyst. The theoretical calculation suggests that the single-atomic W possesses a favorable energetics toward the formation of *OOH whereby the intermediates can be efficiently converted and further reduced to water, revealing a interfacial cascade catalysis facilitated by the single-atomic W. This work highlights a novel functional hybrid electrocatalyst design from the atomic level that enables to solve the bottle-neck issues at device level.

6.
Life (Basel) ; 13(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37374041

RESUMEN

WRKY gene family is one of the largest transcription factor families involved in various physiological processes of plants. Flax (Linum usitatissimum) is an important stem fiber crop, and it is also an economically important crop in natural fiber and textile industries around the world. In this study, 105 WRKY genes were obtained by screening the whole genome of flax. There were 26 in group I, 68 in group II, 8 in group III and 3 in group UN. The characteristics of the WRKY motif and gene structure in each group are similar. The promoter sequence of WRKY genes includes photoresponsive elements, core regulatory elements and 12 cis-acting elements under abiotic stress. Similar to A. thaliana and Compositae plants, WRKY genes are evenly distributed on each chromosome, with segmental and tandem repeated events, which play a major role in the evolution of WRKY genes. The flax WRKY gene family is mainly concentrated in group I and group II. This study is mainly based on genome-wide information to classify and analyze the flax WRKY gene family, laying a foundation for further understanding the role of WRKY transcription factors in species evolution and functional analysis.

7.
Adv Mater ; 35(30): e2301684, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37120149

RESUMEN

It is challenging to achieve long-term stability of perovskite solar cells due to the corrosion and diffusion of metal electrodes. Integration of compact barriers into devices has been recognized as an effective strategy to protect the perovskite absorber and electrode. However, the difficulty is to construct a thin layer of a few nanometers that can delay ion migration and impede chemical reactions simultaneously, in which the delicate microstructure design of a stable material plays an important role. Herein, ZrNx barrier films with high amorphization are introduced in p-i-n perovskite solar cells. To quantify the amorphous-crystalline (a-c) density, pattern recognition techniques are employed. It is found the decreasing a-c interface in an amorphous film leads to dense atom arrangement and uniform distribution of chemical potential, which retards the interdiffusion at the interface between ions and metal atoms and protect the electrodes from corrosion. The resultant solar cells exhibit improved operational stability, which retains 88% of initial efficiency after continuous maximum power point tracking under 1-Sun illumination at room temperature (25 °C) for 1500 h.

8.
Front Plant Sci ; 14: 1124905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909424

RESUMEN

Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is the world's most widely cultivated crop and an important staple food for humans, accounting for one-fifth of calories consumed. Proteins encoded by the regulator of chromosome condensation 1 (RCC1) are highly conserved among eukaryotes and consist of seven repeated domains that fold into a seven-bladed propeller structure. In this study, a total of 76 RCC1 genes of bread wheat were identified via a genome-wide search, and their phylogenetic relationship, gene structure, protein-conserved domain, chromosome localization, conserved motif, and transcription factor binding sites were systematically analyzed using the bioinformatics approach to indicate the evolutionary and functional features of these genes. The expression patterns of 76 TaRCC1 family genes in wheat under various stresses were further analyzed, and RT-PCR verified that RCC1-3A (TraesCS3A02G362800), RCC1-3B (TraesCS3B02G395200), and RCC1-3D (TraesCS3D02G35650) were significantly induced by salt, cold, and drought stresses. Additionally, the co-expression network analysis and binding site prediction suggested that Myb-7B (TraesCS7B02G188000) and Myb-7D (TraesCS7D02G295400) may bind to the promoter of RCC1-3A/3B and upregulate their expression in response to abiotic stresses in wheat. The results have furthered our understanding of the wheat RCC1 family members and will provide important information for subsequent studies and the use of RCC1 genes in wheat.

9.
Pak J Pharm Sci ; 35(2): 441-445, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35642398

RESUMEN

This study aimed to explore the impact of rock salt aerosol therapy on the quality of life in pneumoconiosis patients. It may provide new treatment method for the comprehensive control of pneumoconiosis. A total of 452 subjects from 6 hospitals were divided based on the multi-level hierarchical random design. The patients in the treatment group received conventional comprehensive treatment + rock salt aerosol therapy. The baseline data were collected, including gender, age, age of dust exposure, stage and COPD combination. Cough, expectoration and dyspnea levels were valuated. Both of the two methods exhibited good curative effect following time extension. Rock salt aerosol therapy showed more significant effect compared with routine method. The clinical symptom tends to be stable after two weeks treatment of rock salt aerosol therapy. The curative effect increases with the extension of treatment time. 2-4 weeks for one course of treatment can improve the curative effect. Rock salt aerosol therapy can effectively improve the quality of life of pneumoconiosis patients. It is a good treatment and rehabilitation method for the prevention and treatment of pneumoconiosis, thus is worthy of clinical application.


Asunto(s)
Neumoconiosis , Calidad de Vida , Aerosoles , Humanos , Neumoconiosis/tratamiento farmacológico , Cloruro de Sodio Dietético
10.
Front Chem ; 9: 699861, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295875

RESUMEN

With the increasing enthusiasm for the hydrogen economy and zero-emission fuel cell technologies, intensive efforts have been dedicated to the development of high-performance electrocatalytic materials for the cathodic oxygen reduction reaction (ORR). Some major fundamental breakthroughs have been made in the past few years. Therefore, reviewing the most recent development of platinum-group-metal (PGM) ORR electrocatalysts is of great significance to pushing it forward. It is known that the ORR on the fuel cell electrode is a heterogeneous reaction occurring at the solid/liquid interface, wherein the electron reduces the oxygen along with species in the electrolyte. Therefore, the ORR kinetic is in close correlation with the electronic density of states and wave function, which are dominated by the localized atomic structure including the atomic distance and coordination number (CN). In this review, the recent development in the regulation over the localized state on the catalyst surface is narrowed down to the following structural factors whereby the corresponding strategies include: the crystallographic facet engineering, phase engineering, strain engineering, and defect engineering. Although these strategies show distinctive features, they are not entirely independent, because they all correlate with the atomic local structure. This review will be mainly divided into four parts with critical analyses and comparisons of breakthroughs. Meanwhile, each part is described with some more specific techniques as a methodological guideline. It is hoped that the review will enhance an insightful understanding on PGM catalysts of ORR with a visionary outlook.

11.
PeerJ ; 8: e8470, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140299

RESUMEN

Kenaf is an annual bast fiber crop. Drought stress influences the growth of kenaf stems and causes a marked decrease in fiber yield and quality. Research on the drought resistance of kenaf is therefore important, but limited information is available on the response mechanism of kenaf to drought stress. In this study, a transcriptome analysis of genes associated with the drought stress response in kenaf was performed. About 264,244,210 bp high-quality reads were obtained after strict quality inspection and data cleaning. Compared with the control group, 4,281 genes were differentially expressed in plants treated with drought stress for 7 d (the drought stress group). Compared with the control group, 605 genes showed differential expression in plants subjected to drought stress for 6 d and then watered for 1 d (the rewatering group). Compared with the rewatering group, 5,004 genes were differentially expressed in the drought stress group. In the comparisons between the drought stress and control groups, and between the drought stress and rewatering groups, the pathway that showed the most highly significant enrichment was plant hormone signal transduction. In the comparison between the rewatering and control groups, the pathways that showed the most highly significant enrichment were starch and sucrose metabolism. Eight transcription factors belonging to the AP2/ERF, MYB, NAC, and WRKY families (two transcription factors per family) detected in the leaf transcriptome were associated with the drought stress response. The identified transcription factors provide a basis for further investigation of the response mechanism of kenaf to drought stress.

12.
Front Chem ; 8: 130, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211376

RESUMEN

The halide perovskite (PVSK) material, an excellent light absorber with fast carrier kinetics, has received increased attention as a potential photocatalyst for organic synthesis. Herein, we report a straightforward synthesis of chemically modified halide perovskite and its application as an efficient photocatalyst to convert styrene into benzaldehyde. A simple method is employed to synthesize the chemically modified CsPbBr3/Cs4PbBr6 nanosheets by using ZrCl4 to simultaneously achieve the Cl doping and the surface modification with Zr species. The photocatalytic oxidation rate of styrene to benzaldehyde catalyzed by surface-modified CsPbBr3/Cs4PbBr6 nanosheets under visible light can reach 1,098 µmol g-1 h-1, 2.9 times higher than that of pristine CsPbBr3/Cs4PbBr6 nanosheets (372 µmol g-1 h-1). The enhanced photocatalytic performance may originate from the modified band structure induced by the synergistic effect of Cl doping and surface modification, whereby the same methodology can be applied to MAPbBr3. This work demonstrates the surface modification of PVSK materials and their potential as efficient photocatalyst toward organic synthesis.

13.
J Craniofac Surg ; 31(2): 577-582, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31895856

RESUMEN

BACKGROUND: Demineralized bone matrices (DBMs) were demonstrated to be a promising candidate for bone regeneration by previous studies. However, the limited osteoinductivity of DBMs was insufficient for a better repairing of bone defect. Osteoblasts (OBs), the major cellular component of bone tissues, play an important role in the formation of new bone. The extracellular matrix (ECM) of OB is one of the main components of bone formation niche. OBJECTIVE: To combine the DBMs with the ECM of OBs to construct a novel scaffold that could be used for bone reconstruction. METHODS: In this study, OBs were cultured on the surface of DBMs for 10 days and removed by Triton X-100 and ammonium hydroxide to prepare the OBs-ECM-DBMs (OEDBMs). A series of material features such as residues of OBs and ECM, cytotoxity, and osteoinductive capability of OEDBMs were evaluated. RESULTS: Low cell residues and low content of DNA were observed in OEDBMs. Compared with DBMs, OEDBMs possessed more bone tissues organic matrix proteins, such as osteocalcin, osteopontin, and collagen I. Rat bone marrow mesenchymal stem cells (rBMSCs) presented a good viability when cultured on both 2 materials. The significant upregulations of osteogenic genes and proteins of rBMSCs were observed in OEDBMs group compared with DBMs group. CONCLUSION: Taken together, these findings suggested that the OB-secreted ECM may be qualified as an ideal modification method for enhancing the performance of engineered bone scaffold.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Osteogénesis , Animales , Médula Ósea , Matriz Ósea/metabolismo , Bovinos , Células Cultivadas , Matriz Extracelular , Ratas
14.
Adv Mater ; 31(31): e1808115, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31183932

RESUMEN

Currently, Pt-based electrocatalysts are adopted in the practical proton exchange membrane fuel cell (PEMFC), which converts the energy stored in hydrogen and oxygen into electrical power. However, the broad implementation of the PEMFC, like replacing the internal combustion engine in the present automobile fleet, sets a requirement for less Pt loading compared to current devices. In principle, the requirement needs the Pt-based catalyst to be more active and stable. Two main strategies, engineering of the electronic (d-band) structure (including controlling surface facet, tuning surface composition, and engineering surface strain) and optimizing the reactant adsorption sites are discussed and categorized based on the fundamental working principle. In addition, general routes for improving the electrochemical surface area, which improves activity normalized by the unit mass of precious group metal/platinum group metal, and stability of the electrocatalyst are also discussed. Furthermore, the recent progress of full fuel cell tests of novel electrocatalysts is summarized. It is suggested that a better understanding of the reactant/intermediate adsorption, electron transfer, and desorption occurring at the electrolyte-electrode interface is necessary to fully comprehend these electrified surface reactions, and standardized membrane electrode assembly (MEA) testing protocols should be practiced, and data with full parameters detailed, for reliable evaluation of catalyst functions in devices.

15.
Acta Biomater ; 87: 207-222, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30716553

RESUMEN

Liposomes (lip) carrying pharmaceuticals have shown promise in their ability to advance the therapy for neurodegenerative diseases. However, the low nerve-targeting capacity and poor penetration rate of lip through the blood-brain barrier (BBB) are major hurdles to achieving successful treatment. Herein, we developed lip incorporating cardiolipin (CL) and phosphatidic acid (PA) to promote their capability against hyperphosphorylation of tau protein, and a transactivator of transcription (TAT) peptide to permeate the BBB for delivering nerve growth factor (NGF), rosmarinic acid (RA), curcumin (CURC) and quercetin (QU). We derived an optimization method to assess a better composition of phospholipids in the lip loaded with the four medicines. Experimental results revealed that this optimized lip increased the viability of SK-N-MC cells insulted with ß-amyloid peptide (Aß) fibrils and prevented Wistar rat brain from producing hyperphosphorylated tau. CL and PA and the grafted TAT peptide on the carrier surface improved the rescue efficiency by inhibiting Aß deposition and reducing the expressions of phosphorylated extracellular signal-regulated protein kinase 1/2 (p-ERK1/2), c-Jun N-terminal protein kinase, p38, tau at serine 202 and caspase-3. The lip also enhanced the expressions of p-ERK5 and p-cyclic adenosine monophosphate response element-binding protein. The amalgamated activity of NGF, RA, CURC and QU, and the effect of charged CL/PA on Aß deposits supported the therapeutic efficacy of lip. The optimized TAT-NGF-RA-CURC-QU-CL/PA-lip can be a capable drug delivery system to cross the BBB and protect Alzheimer's disease brains from tau hyperphosphorylation. STATEMENTS OF SIGNIFICANCE: The therapeutic efficiency of liposomes (lip) against neurodegenerative disorder depends on their nerve-targeting capacity and ability to permeate the blood-brain barrier (BBB). Lip was developed incorporating cardiolipin (CL) and phosphatidic acid (PA) to promote their target specificity against hyperphosphorylation of tau protein, and a transactivator of transcription (TAT) peptide to permeate the BBB. We have successfully derived an optimization method using a new mathematical expression for the first time to assess a better composition of phospholipids in lip loaded with nerve growth factor (NGF), rosmarinic acid (RA), curcumin (CURC) and quercetin (QU). The optimized TAT-NGF-RA-CURC-QU-CL/PA-lip efficaciously down-regulated the expressions of phosphorylated extracellular signal-regulated protein kinase 1/2 (p-ERK1/2), c-Jun N-terminal protein kinase, p38, tau at serine 202 and caspase-3, and up-regulated the expressions of p-ERK5 and p-cyclic adenosine monophosphate response element-binding protein in Alzheimer's disease Wistar rat model.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Apoptosis/efectos de los fármacos , Curcumina , Hipocampo , Factor de Crecimiento Nervioso , Neuronas , Quercetina , Transactivadores , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Liposomas , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/farmacocinética , Factor de Crecimiento Nervioso/farmacología , Neuronas/metabolismo , Neuronas/patología , Quercetina/química , Quercetina/farmacocinética , Quercetina/farmacología , Ratas , Ratas Wistar , Transactivadores/química , Transactivadores/farmacocinética , Transactivadores/farmacología
16.
FEBS Open Bio ; 8(10): 1572-1583, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30338209

RESUMEN

The molecular mechanisms that underlie drought stress responses in kenaf, an important crop for the production of natural fibers, are poorly understood. To address this issue, we describe here the first iTRAQ-based comparative proteomic analysis of kenaf seedlings. Plants were divided into the following three treatment groups: Group A, watered normally (control); Group B, not watered for 6 days (drought treatment); and Group C, not watered for 5 days and then rewatered for 1 day (recovery treatment). A total of 5014 proteins were detected, including 4932 (i.e., 98.36%) that were matched to known proteins in a BLAST search. We detected 218, 107, and 348 proteins that were upregulated in Group B compared with Group A, Group C compared with Group A, and Group B compared with Group C, respectively. Additionally, 306, 145, and 231 downregulated proteins were detected during the same comparisons. Seventy differentially expressed proteins were analyzed and classified into 10 categories: photosynthesis, sulfur metabolism, amino sugar and nucleotide sugar metabolism, oxidative phosphorylation, ribosome, fatty acid elongation, thiamine metabolism, tryptophan metabolism, plant-pathogen interaction, and propanoate. Kenaf adapted to stress mainly by improving the metabolism of ATP, regulating photosynthesis according to light intensity, promoting the synthesis of osmoregulators, strengthening ion transport signal transmission, and promoting metabolism and cell stability. This is the first study to examine changes in protein expression in kenaf plants exposed to drought stress. Our results identified key drought-responsive genes and proteins and may provide useful genetic information for improving kenaf stress resistance.

17.
RSC Adv ; 8(43): 24509-24516, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35539203

RESUMEN

The exploration of highly efficient catalysts to replace noble metal platinum for the oxygen reduction reaction, on which M/N/C catalysts have shed brilliant light, is greatly significant but challenging. This paper presents a strategy for synthesizing highly efficient and stabilized hollow structure Fe/N/C catalysts with iron and nitrogen doped into the carbon layer by the self-template method. The prepared Fe/N/C catalysts with NaCl protection during pyrolysis are characterized by a unique hollow structure, porous morphology and Fe-N coordination as the active sites, all of which significantly endow the materials with excellent properties towards the ORR, including high electrical conductivity, long-term durability and outstanding capacity for methanol tolerance. We employed X-ray absorption fine structure spectrometry to investigate the chemical state and coordination environment of the central iron atoms of the Fe/N/C catalysts, which also clarified the promoting effect of the NaCl protection for Fe-N coordination during pyrolysis. In particular, the Fe/N/C catalysts exhibit positive half-wave potentials (0.84 V vs. RHE) and Tafel slope comparable to 20% commercial Pt/C, possessing four-electron transfer pathway as well as excellent long-term stability and methanol tolerance in alkaline medium.

18.
Chemistry ; 18(13): 3955-68, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22354807

RESUMEN

The dioxygen activation of a series of Cu(I)Cu(I)Cu(I) complexes based on the ligands (L) 3,3'-(1,4-diazepane- 1,4-diyl)bis(1-{[2-(dimethylamino)ethyl](methyl)amino}propan-2-ol)(7-Me) or 3,3'-(1,4-diazepane-1,4-diyl)bis(1-{[2-(diethylamino)ethyl](ethyl)amino}propan-2-ol)(7-Et) forms an intermediate capable of mediating facile O-atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7-Me, 7-Et, and 3,3'-(1,4-diazepane-1,4-diyl)bis[1-(4-methylpiperazin-1-yl)propan-2-ol] (7-N-Meppz) with dioxygen at -80, -55, and -35 °C in propionitrile (EtCN) by UV-visible, 77 K EPR, and X-ray absorption spectroscopy, and 7-N-Meppz and 7-Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both -80 and -55 °C, the mixing of the starting [Cu(I)Cu(I)Cu(I)(L)](1+) complex (1) with O(2)-saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [Cu(II)Cu(II)(µ-η(2):η(2)-peroxo)Cu(II)(L)](2+) (2) and the blue [Cu(II)Cu(II)(µ-O)Cu(II)(L)](2+) species (3). These observations are consistent with the initial formation of [Cu(II)Cu(II)(µ-O)(2)Cu(III)(L)](1+)(4), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [Cu(II)Cu(I)Cu(I)(L)](2+)(5) to form the green dioxygen adduct 2. Assignment of 2 to [Cu(II)Cu(II)(µ-η(2):η(2)-peroxo)Cu(II)(L)](2+) is consistent with its reactivity with water to give H(2)O(2) and the blue species 3, as well as its propensity to be photoreduced in the X-ray beam during X-ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1) rapid dioxygen chemistry; 2) facile O-atom transfer from the activated cluster to substrate; and 3) a suitable reductant to rapidly regenerate complex 1 to accomplish efficient catalytic turnover.


Asunto(s)
Cobre/química , Modelos Químicos , Compuestos Organometálicos/química , Oxígeno/química , Espectroscopía de Resonancia por Spin del Electrón , Methylococcus/química , Estructura Molecular , Oxidación-Reducción
19.
J Biol Inorg Chem ; 13(6): 961-72, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18449575

RESUMEN

SoxR is a transcriptional factor in Escherichia coli that induces the expression of SoxS to initiate the production of enzymes in response to oxidative stress. In addition to superoxide, SoxR is also sensitive to cellular NO to produce a protein-bound dinitrosyl-iron complex (DNIC) with a characteristic electron paramagnetic resonance (EPR) signal at g(av)=2.03. Toward developing a strategy for NO sensing based on this property of SoxR, we have overexpressed and purified the recombinant His-tagged SoxR protein. Upon treatment of the purified protein under anaerobic conditions with (1) NO solution, (2) S-nitrosothiol (RSNO), and (3) chemically synthesized low molecular weight DNICs (LMW-DNICs), we have observed enhancement of the EPR signal at g(av)=2.03 from the protein-bound DNICs over time, reflecting the redistribution of NO from the NO solution, RSNO and LMW-DNICs to the SoxR. We have exploited this NO exchange to investigate the kinetics and mechanisms of release and delivery of NO from various LMW-DNICs to an isopropyl-beta-D-thiogalactopyranoside-dependent SoxR expressed in E. coli cells. These experiments revealed that the NO from RSNO and LMW-DNICs could cross the biological membrane and enter the cytoplasm of the cell to form the SoxR protein-bound DNIC complex. For comparison, we have also studied the direct NO transfer from the LMW-DNICs to the SoxR protein in buffer. The NO transfer was found to be rapid. From the kinetic data derived, we showed that LMW-DNICs with bidentate thiolate ligands displayed greater stability in aqueous solution but exhibited more facile NO delivery to cytoplasmic SoxR in whole cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Compuestos Férricos/metabolismo , Óxido Nítrico/metabolismo , Compuestos Nitrosos/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Compuestos Férricos/química , Cinética , Conformación Molecular , Óxido Nítrico/química , Compuestos Nitrosos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Factores de Transcripción/química , Factores de Transcripción/aislamiento & purificación
20.
J Org Chem ; 72(22): 8531-4, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17915920

RESUMEN

Electrochemical oxidation of pentaaryl 2 containing two furan moieties occurs sequentially to give diketone 8 after two-electron transfer. Further oxidation with another two-electron transfer gives the corresponding tetraketone 9. Radical cation intermediate is detected by absorption spectroscopy. The radical intermediates of different regiochemistry have been shown to exhibit different oxidation potentials as revealed by the differential pulse voltammetry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA