RESUMEN
An apical lesion is caused by bacteria invading the tooth apex through caries. Periodontal disease is caused by plaque accumulation. Peri-endo combined lesions include both diseases and significantly affect dental prognosis. The lack of clear symptoms in the early stages of onset makes diagnosis challenging, and delayed treatment can lead to the spread of symptoms. Early infection detection is crucial for preventing complications. PAs used as the database were provided by Chang Gung Memorial Medical Center, Taoyuan, Taiwan, with permission from the Institutional Review Board (IRB): 02002030B0. The tooth apex image enhancement method is a new technology in PA detection. This image enhancement method is used with convolutional neural networks (CNN) to classify apical lesions, peri-endo combined lesions, and asymptomatic cases, and to compare with You Only Look Once-v8-Oriented Bounding Box (YOLOv8-OBB) disease detection results. The contributions lie in the utilization of database augmentation and adaptive histogram equalization on individual tooth images, achieving the highest comprehensive validation accuracy of 95.23% with the ConvNextv2 model. Furthermore, the CNN outperformed YOLOv8 in identifying apical lesions, achieving an F1-Score of 92.45%. For the classification of peri-endo combined lesions, CNN attained the highest F1-Score of 96.49%, whereas YOLOv8 scored 88.49%.
RESUMEN
The severity of periodontitis can be analyzed by calculating the loss of alveolar crest (ALC) level and the level of bone loss between the tooth's bone and the cemento-enamel junction (CEJ). However, dentists need to manually mark symptoms on periapical radiographs (PAs) to assess bone loss, a process that is both time-consuming and prone to errors. This study proposes the following new method that contributes to the evaluation of disease and reduces errors. Firstly, innovative periodontitis image enhancement methods are employed to improve PA image quality. Subsequently, single teeth can be accurately extracted from PA images by object detection with a maximum accuracy of 97.01%. An instance segmentation developed in this study accurately extracts regions of interest, enabling the generation of masks for tooth bone and tooth crown with accuracies of 93.48% and 96.95%. Finally, a novel detection algorithm is proposed to automatically mark the CEJ and ALC of symptomatic teeth, facilitating faster accurate assessment of bone loss severity by dentists. The PA image database used in this study, with the IRB number 02002030B0 provided by Chang Gung Medical Center, Taiwan, significantly reduces the time required for dental diagnosis and enhances healthcare quality through the techniques developed in this research.
RESUMEN
In the field of dentistry, the presence of dental calculus is a commonly encountered issue. If not addressed promptly, it has the potential to lead to gum inflammation and eventual tooth loss. Bitewing (BW) images play a crucial role by providing a comprehensive visual representation of the tooth structure, allowing dentists to examine hard-to-reach areas with precision during clinical assessments. This visual aid significantly aids in the early detection of calculus, facilitating timely interventions and improving overall outcomes for patients. This study introduces a system designed for the detection of dental calculus in BW images, leveraging the power of YOLOv8 to identify individual teeth accurately. This system boasts an impressive precision rate of 97.48%, a recall (sensitivity) of 96.81%, and a specificity rate of 98.25%. Furthermore, this study introduces a novel approach to enhancing interdental edges through an advanced image-enhancement algorithm. This algorithm combines the use of a median filter and bilateral filter to refine the accuracy of convolutional neural networks in classifying dental calculus. Before image enhancement, the accuracy achieved using GoogLeNet stands at 75.00%, which significantly improves to 96.11% post-enhancement. These results hold the potential for streamlining dental consultations, enhancing the overall efficiency of dental services.
RESUMEN
Magnetic nanoparticles (MNPs) have been widely utilized in the biomedical field for numerous years, offering several advantages such as exceptional biocompatibility and diverse applications in biology. However, the existing methods for quantifying magnetic labeled sample assays are scarce. This research presents a novel approach by developing a microfluidic chip system embedded with a giant magnetoresistance (GMR) sensor. The system successfully detects low concentrations of MNPs with magnetic particle velocities of 20 mm/s. The stray field generated by the magnetic subject flowing through the microchannel above the GMR sensor causes variations in the signals. The sensor's output signals are appropriately amplified, filtered, and processed to provide valuable indications. The integration of the GMR microfluidic chip system demonstrates notable attributes, including affordability, speed, and user-friendly operation. Moreover, it exhibits a high detection sensitivity of 10 µg/µL for MNPs, achieved through optimizing the vertical magnetic field to 100 Oe and the horizontal magnetic field to 2 Oe. Additionally, the study examines magnetic labeled RAW264.7 cells. This quantitative detection of magnetic nanoparticles can have applications in DNA concentration detection, protein concentration detection, and other promising areas of research.
Asunto(s)
Nanopartículas de Magnetita , Microfluídica , Bioensayo , Campos MagnéticosRESUMEN
Furcation defects pose a significant challenge in the diagnosis and treatment planning of periodontal diseases. The accurate detection of furcation involvements (FI) on periapical radiographs (PAs) is crucial for the success of periodontal therapy. This research proposes a deep learning-based approach to furcation defect detection using convolutional neural networks (CNN) with an accuracy rate of 95%. This research has undergone a rigorous review by the Institutional Review Board (IRB) and has received accreditation under number 202002030B0C505. A dataset of 300 periapical radiographs of teeth with and without FI were collected and preprocessed to enhance the quality of the images. The efficient and innovative image masking technique used in this research better enhances the contrast between FI symptoms and other areas. Moreover, this technology highlights the region of interest (ROI) for the subsequent CNN models training with a combination of transfer learning and fine-tuning techniques. The proposed segmentation algorithm demonstrates exceptional performance with an overall accuracy up to 94.97%, surpassing other conventional methods. Moreover, in comparison with existing CNN technology for identifying dental problems, this research proposes an improved adaptive threshold preprocessing technique that produces clearer distinctions between teeth and interdental molars. The proposed model achieves impressive results in detecting FI with identification rates ranging from 92.96% to a remarkable 94.97%. These findings suggest that our deep learning approach holds significant potential for improving the accuracy and efficiency of dental diagnosis. Such AI-assisted dental diagnosis has the potential to improve periodontal diagnosis, treatment planning, and patient outcomes. This research demonstrates the feasibility and effectiveness of using deep learning algorithms for furcation defect detection on periapical radiographs and highlights the potential for AI-assisted dental diagnosis. With the improvement of dental abnormality detection, earlier intervention could be enabled and could ultimately lead to improved patient outcomes.
RESUMEN
As the popularity of dental implants continues to grow at a rate of about 14% per year, so do the risks associated with the procedure. Complications such as sinusitis and nerve damage are not uncommon, and inadequate cleaning can lead to peri-implantitis around the implant, jeopardizing its stability and potentially necessitating retreatment. To address this issue, this research proposes a new system for evaluating the degree of periodontal damage around implants using Periapical film (PA). The system utilizes two Convolutional Neural Networks (CNN) models to accurately detect the location of the implant and assess the extent of damage caused by peri-implantitis. One of the CNN models is designed to determine the location of the implant in the PA with an accuracy of up to 89.31%, while the other model is responsible for assessing the degree of Peri-implantitis damage around the implant, achieving an accuracy of 90.45%. The system combines image cropping based on position information obtained from the first CNN with image enhancement techniques such as Histogram Equalization and Adaptive Histogram Equalization (AHE) to improve the visibility of the implant and gums. The result is a more accurate assessment of whether peri-implantitis has eroded to the first thread, a critical indicator of implant stability. To ensure the ethical and regulatory standards of our research, this proposal has been certified by the Institutional Review Board (IRB) under number 202102023B0C503. With no existing technology to evaluate Peri-implantitis damage around dental implants, this CNN-based system has the potential to revolutionize implant dentistry and improve patient outcomes.
RESUMEN
It has always been a major issue for a hospital to acquire real-time information about a patient in emergency situations. Because of this, this research presents a novel high-compression-ratio and real-time-process image compression very-large-scale integration (VLSI) design for image sensors in the Internet of Things (IoT). The design consists of a YEF transform, color sampling, block truncation coding (BTC), threshold optimization, sub-sampling, prediction, quantization, and Golomb-Rice coding. By using machine learning, different BTC parameters are trained to achieve the optimal solution given the parameters. Two optimal reconstruction values and bitmaps for each 4 × 4 block are achieved. An image is divided into 4 × 4 blocks by BTC for numerical conversion and removing inter-pixel redundancy. The sub-sampling, prediction, and quantization steps are performed to reduce redundant information. Finally, the value with a high probability will be coded using Golomb-Rice coding. The proposed algorithm has a higher compression ratio than traditional BTC-based image compression algorithms. Moreover, this research also proposes a real-time image compression chip design based on low-complexity and pipelined architecture by using TSMC 0.18 µm CMOS technology. The operating frequency of the chip can achieve 100 MHz. The core area and the number of logic gates are 598,880 µm2 and 56.3 K, respectively. In addition, this design achieves 50 frames per second, which is suitable for real-time CMOS image sensor compression.
RESUMEN
Apical Lesions, one of the most common oral diseases, can be effectively detected in daily dental examinations by a periapical radiograph (PA). In the current popular endodontic treatment, most dentists spend a lot of time manually marking the lesion area. In order to reduce the burden on dentists, this paper proposes a convolutional neural network (CNN)-based regional analysis model for spical lesions for periapical radiographs. In this study, the database was provided by dentists with more than three years of practical experience, meeting the criteria for clinical practical application. The contributions of this work are (1) an advanced adaptive threshold preprocessing technique for image segmentation, which can achieve an accuracy rate of more than 96%; (2) a better and more intuitive apical lesions symptom enhancement technique; and (3) a model for apical lesions detection with an accuracy as high as 96.21%. Compared with existing state-of-the-art technology, the proposed model has improved the accuracy by more than 5%. The proposed model has successfully improved the automatic diagnosis of apical lesions. With the help of automation, dentists can focus more on technical and medical diagnoses, such as treatment, tooth cleaning, or medical communication. This proposal has been certified by the Institutional Review Board (IRB) with the certification number 202002030B0.
RESUMEN
Backlight power-saving algorithms can reduce the power consumption of the display by adjusting the frame pixels with optimal clipping points under some tradeoff criteria. However, the computation for the selected clipping points can be complex. In this paper, a novel algorithm is created to reduce the computation time of the state-of-the-art backlight power-saving algorithms. If the current frame is similar to the previous frame, it is unnecessary to execute the backlight power-saving algorithm for the optimal clipping points, and the derived clipping point from the previous frame can be used for the current frame automatically. In this paper, the motion vector information was used as the measurement of the similarity between adjacent frames, where the generation of the motion vector information requires no extra complexity since it is generated to reconstruct the decoded frame pixels before the display. The experiments showed that the proposed work can reduce the running time of the state-of-the-art methods by 25.21% to 64.22%, while the performances are maintained; the differences with the state-of-the-art methods in PSNR are only 0.02~1.91 dB, and those in power are only -0.001~0.008 W.
RESUMEN
This paper presents the development of a wide-beam width, dual-band, omnidirectional antenna for the mm-wave band used in 5G communication systems for indoor coverage. The 5G indoor environment includes features of wide space and short range. Additionally, it needs to function well under a variety of circumstances in order to carry out its diverse set of network applications. The waveguide antenna has been designed to be small enough to meet the requirements of mm-wave band and utilizes a corrugated horn to produce a wide beam width. Additionally, it is small enough to integrate with 5G communication products and is easy to manufacture. This design is simple enough to have multi-feature antenna performance and is more useful for the femtocell repeater. The corrugated circularly polarized horn antenna has been designed for two frequency bands; namely, 26.5-30 GHz for the low band and 36-40 GHz for high band. The results of this study show that return-loss is better than 18 dB for both low and high band. The peak gain is 6.1 dBi for the low band and 8.7 dBi for the high band. The beam width is 105 degrees and 77 degrees for the low band and the high band, respectively. The axial ratio is less than 5.2 dB for both low and high band. Generally, traditional circularly polarized antennas cannot meet the requirements for broadband. The designs for the antennas proposed here can meet the requirements of FR2 bandwidths. This feature limits axial ratio performance. The measurement error in the current experiment comes from the high precision control on the size of the ridge.
RESUMEN
Apical lesions, the general term for chronic infectious diseases, are very common dental diseases in modern life, and are caused by various factors. The current prevailing endodontic treatment makes use of X-ray photography taken from patients where the lesion area is marked manually, which is therefore time consuming. Additionally, for some images the significant details might not be recognizable due to the different shooting angles or doses. To make the diagnosis process shorter and efficient, repetitive tasks should be performed automatically to allow the dentists to focus more on the technical and medical diagnosis, such as treatment, tooth cleaning, or medical communication. To realize the automatic diagnosis, this article proposes and establishes a lesion area analysis model based on convolutional neural networks (CNN). For establishing a standardized database for clinical application, the Institutional Review Board (IRB) with application number 202002030B0 has been approved with the database established by dentists who provided the practical clinical data. In this study, the image data is preprocessed by a Gaussian high-pass filter. Then, an iterative thresholding is applied to slice the X-ray image into several individual tooth sample images. The collection of individual tooth images that comprises the image database are used as input into the CNN migration learning model for training. Seventy percent (70%) of the image database is used for training and validating the model while the remaining 30% is used for testing and estimating the accuracy of the model. The practical diagnosis accuracy of the proposed CNN model is 92.5%. The proposed model successfully facilitated the automatic diagnosis of the apical lesion.
Asunto(s)
Redes Neurales de la Computación , Diente , Humanos , Radiografía , Diente/diagnóstico por imagenRESUMEN
Atrial fibrillation (AF) is the most common cardiovascular disease (CVD), and most existing algorithms are usually designed for the diagnosis (i.e., feature classification) or prediction of AF. Artificial intelligence (AI) algorithms integrate the diagnosis of AF electrocardiogram (ECG) and predict the possibility that AF will occur in the future. In this paper, we utilized the MIT-BIH AF Database (AFDB), which is composed of data from normal people and patients with AF and onset characteristics, and the AFPDB database (i.e., PAF Prediction Challenge Database), which consists of data from patients with Paroxysmal AF (PAF; the records contain the ECG preceding an episode of PAF), and subjects who do not have documented AF. We extracted the respective characteristics of the databases and used them in modeling diagnosis and prediction. In the aspect of model construction, we regarded diagnosis and prediction as two classification problems, adopted the traditional support vector machine (SVM) algorithm, and combined them. The improved quantum particle swarm optimization support vector machine (IQPSO-SVM) algorithm was used to speed the training time. During the verification process, the clinical FZU-FPH database created by Fuzhou University and Fujian Provincial Hospital was used for hybrid model testing. The data were obtained from the Holter monitor of the hospital and encrypted. We proposed an algorithm for transforming the PDF ECG waveform images of hospital examination reports into digital data. For the diagnosis model and prediction model trained using the training set of the AFDB and AFPDB databases, the sensitivity, specificity, and accuracy measures were 99.2% and 99.2%, 99.2% and 93.3%, and 91.7% and 92.5% for the test set of the AFDB and AFPDB databases, respectively. Moreover, the sensitivity, specificity, and accuracy were 94.2%, 79.7%, and 87.0%, respectively, when tested using the FZU-FPH database with 138 samples of the ECG composed of two labels. The composite classification and prediction model using a new water-fall ensemble method had a total accuracy of approximately 91% for the test set of the FZU-FPH database with 80 samples with 120 segments of ECG with three labels.
Asunto(s)
Fibrilación Atrial , Máquina de Vectores de Soporte , Algoritmos , Inteligencia Artificial , Fibrilación Atrial/diagnóstico , Electrocardiografía , HumanosRESUMEN
Caries is a dental disease caused by bacterial infection. If the cause of the caries is detected early, the treatment will be relatively easy, which in turn prevents caries from spreading. The current common procedure of dentists is to first perform radiographic examination on the patient and mark the lesions manually. However, the work of judging lesions and markings requires professional experience and is very time-consuming and repetitive. Taking advantage of the rapid development of artificial intelligence imaging research and technical methods will help dentists make accurate markings and improve medical treatments. It can also shorten the judgment time of professionals. In addition to the use of Gaussian high-pass filter and Otsu's threshold image enhancement technology, this research solves the problem that the original cutting technology cannot extract certain single teeth, and it proposes a caries and lesions area analysis model based on convolutional neural networks (CNN), which can identify caries and restorations from the bitewing images. Moreover, it provides dentists with more accurate objective judgment data to achieve the purpose of automatic diagnosis and treatment planning as a technology for assisting precision medicine. A standardized database established following a defined set of steps is also proposed in this study. There are three main steps to generate the image of a single tooth from a bitewing image, which can increase the accuracy of the analysis model. The steps include (1) preprocessing of the dental image to obtain a high-quality binarization, (2) a dental image cropping procedure to obtain individually separated tooth samples, and (3) a dental image masking step which masks the fine broken teeth from the sample and enhances the quality of the training. Among the current four common neural networks, namely, AlexNet, GoogleNet, Vgg19, and ResNet50, experimental results show that the proposed AlexNet model in this study for restoration and caries judgments has an accuracy as high as 95.56% and 90.30%, respectively. These are promising results that lead to the possibility of developing an automatic judgment method of bitewing film.
Asunto(s)
Caries Dental , Diente , Inteligencia Artificial , Caries Dental/diagnóstico por imagen , Susceptibilidad a Caries Dentarias , Humanos , Aprendizaje Automático , Redes Neurales de la ComputaciónRESUMEN
Diverse computer-aided diagnosis systems based on convolutional neural networks were applied to automate the detection of myocardial infarction (MI) found in electrocardiogram (ECG) for early diagnosis and prevention. However, issues, particularly overfitting and underfitting, were not being taken into account. In other words, it is unclear whether the network structure is too simple or complex. Toward this end, the proposed models were developed by starting with the simplest structure: a multi-lead features-concatenate narrow network (N-Net) in which only two convolutional layers were included in each lead branch. Additionally, multi-scale features-concatenate networks (MSN-Net) were also implemented where larger features were being extracted through pooling the signals. The best structure was obtained via tuning both the number of filters in the convolutional layers and the number of inputting signal scales. As a result, the N-Net reached a 95.76% accuracy in the MI detection task, whereas the MSN-Net reached an accuracy of 61.82% in the MI locating task. Both networks give a higher average accuracy and a significant difference of p < 0.001 evaluated by the U test compared with the state-of-the-art. The models are also smaller in size thus are suitable to fit in wearable devices for offline monitoring. In conclusion, testing throughout the simple and complex network structure is indispensable. However, the way of dealing with the class imbalance problem and the quality of the extracted features are yet to be discussed.
Asunto(s)
Algoritmos , Infarto del Miocardio , Diagnóstico por Computador , Electrocardiografía , Humanos , Infarto del Miocardio/diagnóstico , Redes Neurales de la ComputaciónRESUMEN
In this paper, a low cost 28 GHz Antenna-in-Package (AIP) for a 5G communication system is designed and investigated. The antenna is implemented on a low-cost FR4 substrate with a phase shift control integrated circuit, AnokiWave phasor integrated circuit (IC). The unit cell where the array antenna and IC are integrated in the same plate constructs a flexible phase array system. Using the AIP unit cell, the desired antenna array can be created, such as 2 × 8, 8 × 8 or 2 × 64 arrays. The study design proposed in this study is a 2 × 2 unit cell structure with dimensions of 18 mm × 14 mm × 0.71 mm. The return loss at a 10 dB bandwidth is 26.5-29.5 GHz while the peak gain of the unit cell achieved 14.4 dBi at 28 GHz.
RESUMEN
This study presents a low-power multi-lead wearable electrocardiogram (ECG) signal sensor system design that can simultaneously acquire the electrocardiograms from three leads, I, II, and V1. The sensor system includes two parts, an ECG test clothing with five electrode patches and an acquisition device. Compared with the traditional 12-lead wired ECG detection instrument, which limits patient mobility and needs medical staff assistance to acquire the ECG signal, the proposed vest-type ECG acquisition system is very comfortable and easy to use by patients themselves anytime and anywhere, especially for the elderly. The proposed study incorporates three methods to reduce the power consumption of the system by optimizing the micro control unit (MCU) working mode, adjusting the radio frequency (RF) parameters, and compressing the transmitted data. In addition, Huffman lossless coding is used to compress the transmitted data in order to increase the sampling rate of the acquisition system. It makes the whole system operate continuously for a long period of time and acquire abundant ECG information, which is helpful for clinical diagnosis. Finally, a series of tests were performed on the designed wearable ECG device. The results have demonstrated that the multi-lead wearable ECG device can collect, process, and transmit ECG data through Bluetooth technology. The ECG waveforms collected by the device are clear, complete, and can be displayed in real-time on a mobile phone. The sampling rate of the proposed wearable sensor system is 250 Hz per lead, which is dependent on the lossless compression scheme. The device achieves a compression ratio of 2.31. By implementing a low power design on the device, the resulting overall operational current of the device is reduced by 37.6% to 9.87 mA under a supply voltage of 2.1 V. The proposed vest-type multi-lead ECG acquisition device can be easily employed by medical staff for clinical diagnosis and is a suitable wearable device in monitoring and nursing the off-ward patients.
Asunto(s)
Electrocardiografía Ambulatoria , Electrocardiografía/instrumentación , Monitoreo Fisiológico/métodos , Dispositivos Electrónicos Vestibles , Teléfono Celular , Humanos , Monitoreo Fisiológico/instrumentación , Procesamiento de Señales Asistido por ComputadorRESUMEN
Wireless Sensor Networks (WSNs) had been applied in Internet of Things (IoT) and in Industry 4.0. Since a WSN system contains multiple wireless sensor nodes, it is necessary to develop a low-power and multiband wireless communication system that satisfies the specifications of the Federal Communications Commission (FCC) and the Certification European (CE). In a WSN system, many devices are of very small size and can be slipped into a Universal Serial Bus (USB), which is capable of connecting to wireless systems and networks, as well as transferring data. These devices are widely known as USB dongles. This paper develops a planar USB dongle antenna for three frequency bands, namely 2.30-2.69 GHz, 3.40-3.70 GHz, and 5.15-5.85 GHz. This study proposes a novel antenna design that uses four loops to develop the multiband USB dongle. The first and second loops construct the low and intermediate frequency ranges. The third loop resonates the high frequency property, while the fourth loop is used to enhance the bandwidth. The performance and power consumption of the proposed multiband planar USB dongle antenna were significantly improved compared to existing multiband designs.
RESUMEN
In this paper, a low-cost, low-power and high performance micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of an asynchronous interface, a register bank, a reconfigurable filter, a slop-feature forecast, a lossless data encoder, an error correct coding (ECC) encoder, a UART interface, a power management (PWM), and a multi-sensor controller. To improve the system performance and expansion abilities, the asynchronous interface is added for handling signal exchanges between different clock domains. To eliminate the noise of various bio-signals, the reconfigurable filter is created to provide the functions of average, binomial and sharpen filters. The slop-feature forecast and the lossless data encoder is proposed to reduce the data of various biomedical signals for transmission. Furthermore, the ECC encoder is added to improve the reliability for the wireless transmission and the UART interface is employed the proposed design to be compatible with wireless devices. For long-term healthcare monitoring application, a power management technique is developed for reducing the power consumption of the WBSN system. In addition, the proposed design can be operated with four different bio-sensors simultaneously. The proposed design was successfully tested with a FPGA verification board. The VLSI architecture of this work contains 7.67-K gate counts and consumes the power of 5.8 mW or 1.9 mW at 100 MHz or 133 MHz processing rate using a TSMC 0.18 µm or 0.13 µm CMOS process. Compared with previous techniques, this design achieves higher performance, more functions, more flexibility and higher compatibility than other micro controller designs.
Asunto(s)
Técnicas Biosensibles/instrumentación , Redes de Comunicación de Computadores/instrumentación , Tecnología Inalámbrica , Algoritmos , Humanos , Telemetría/instrumentaciónRESUMEN
In this work, an asynchronous multi-sensor micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of asynchronous interfaces, a power management unit, a multi-sensor controller, a data encoder (DE), and an error correct coder (ECC). To improve the system performance and expansion abilities, the asynchronous interface is created for handshaking different clock domains between ADC and RF with MCU. To increase the use time of the WBSN system, a power management technique is developed for reducing power consumption. In addition, the multi-sensor controller is designed for detecting various biomedical signals. To prevent loss error from wireless transmission, use of an error correct coding technique is important in biomedical applications. The data encoder is added for lossless compression of various biomedical signals with a compression ratio of almost three. This design is successfully tested on a FPGA board. The VLSI architecture of this work contains 2.68-K gate counts and consumes power 496-µW at 133-MHz processing rate by using TSMC 0.13-µm CMOS process. Compared with the previous techniques, this work offers higher performance, more functions, and lower hardware cost than other micro controller designs.
Asunto(s)
Cuerpo Humano , Monitoreo Fisiológico/instrumentación , Tecnología Inalámbrica/instrumentación , Redes de Comunicación de Computadores/instrumentación , Sistemas de Computación , Compresión de Datos , Diseño de Equipo , Humanos , Procesamiento de Señales Asistido por Computador/instrumentaciónRESUMEN
There is an increasing need to develop flexible, reconfigurable, and intelligent low power wireless sensor network (WSN) system for healthcare applications. Technical advancements in micro-sensors, MEMS devices, low power electronics, and radio frequency circuits have enabled the design and development of such highly integrated system. In this paper, we present our proposed wireless thermal sensor network system, which is separated into control and data paths. Both of these paths have their own transmission frequencies. The control path sends the power and function commands from computer to each sensor elements by 2.4GHz RF circuits and the data path transmits measured data by 2.4GHz in sensor layer and 60GHz in higher layers. This hierarchy architecture would make reconfigurable mapping and pipeline applications on WSN possibly, and the average power consumption can be efficiently reduced about 60% by using the adaptive technique.