Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Public Health ; 17(11): 102556, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39388868

RESUMEN

BACKGROUND: Omicron, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, entered Taiwan at the end of 2021. The Taiwanese government ended its "zero-COVID" policy in March 2022. Multiple coronavirus disease 2019 (COVID-19) outbreaks began in April 2022. We monitored the replacement of Omicron subvariants after BA.1/BA.2 and analyzed their correlation with COVID-19 outbreaks. METHODS: We collected SARS-CoV-2 real-time qRTPCR-positive nasopharyngeal swabs from Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan, and performed sequencing for specimens exhibiting a cytopathic effect in Vero E6 cells to determine their clades and lineages. We analyzed the medical records of COVID-19 patients and identified hospitalization risk factor(s). We retrieved SARS-CoV-2 sequences identified in Taiwan from GISAID and analyzed their correlation with COVID-19 data from the Taiwan Centers for Disease Control. RESULTS: We analyzed the phylogenesis of KMUH-47 to KMUH-104 (SARS-CoV-2 isolates identified herein) and all of the Omicron subvariants from BA.5 to XBB.1 (n = 1930). Age and comorbidities were hospitalization risk factors. Men generally exhibited a greater fatality rate than women. COVID-19-related deaths predominantly occurred in individuals over 70 years old. The COVID-19-related case fatality rate increased as nucleotide (NT) and amino acid (AA) substitutions increased. The number of COVID-19-related cases and deaths progressively decreased with each outbreak between August 2022 and October 2023. CONCLUSION: Hospitalization was associated with age and the presence of comorbidities. COVID-19-related fatality was linked to sex, age, and the accumulation of NT and AA substitutions in emerging Omicron subvariants.


Asunto(s)
COVID-19 , Filogenia , SARS-CoV-2 , Humanos , Taiwán/epidemiología , COVID-19/epidemiología , COVID-19/virología , Masculino , SARS-CoV-2/genética , Femenino , Persona de Mediana Edad , Adulto , Anciano , Niño , Adulto Joven , Preescolar , Adolescente , Lactante , Anciano de 80 o más Años , Hospitalización/estadística & datos numéricos , Betacoronavirus/genética , Betacoronavirus/clasificación , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Factores de Riesgo , Pandemias , Animales , Neumonía Viral/epidemiología , Neumonía Viral/virología , Chlorocebus aethiops , Células Vero , Recién Nacido
2.
J Adv Res ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089617

RESUMEN

BACKGROUND: Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW: This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW: CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.

3.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895463

RESUMEN

The mosquito Aedes aegypti is a prominent vector for arboviruses, but the breadth of mosquito viruses that infects this specie is not fully understood. In the broadest global survey to date of over 200 Ae. aegypti small RNA samples, we detected viral small interfering RNAs (siRNAs) and Piwi interacting RNAs (piRNAs) arising from mosquito viruses. We confirmed that most academic laboratory colonies of Ae. aegypti lack persisting viruses, yet two commercial strains were infected by a novel tombus-like virus. Ae. aegypti from North to South American locations were also teeming with multiple insect viruses, with Anphevirus and a bunyavirus displaying geographical boundaries from the viral small RNA patterns. Asian Ae. aegypti small RNA patterns indicate infections by similar mosquito viruses from the Americas and reveal the first wild example of dengue virus infection generating viral small RNAs. African Ae. aegypti also contained various viral small RNAs including novel viruses only found in these African substrains. Intriguingly, viral long RNA patterns can differ from small RNA patterns, indicative of viral transcripts evading the mosquitoes' RNA interference (RNAi) machinery. To determine whether the viruses we discovered via small RNA sequencing were replicating and transmissible, we infected C6/36 and Aag2 cells with Ae. aegypti homogenates. Through blind passaging, we generated cell lines stably infected by these mosquito viruses which then generated abundant viral siRNAs and piRNAs that resemble the native mosquito viral small RNA patterns. This mosquito small RNA genomics approach augments surveillance approaches for emerging infectious diseases.

4.
J Virol ; 98(7): e0070124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888345

RESUMEN

Vector competence defines the ability of a vector to acquire, host, and transmit a pathogen. Understanding the molecular determinants of the mosquitos' competence to host dengue virus (DENV) holds promise to prevent its transmission. To this end, we employed RNA-seq to profile mRNA transcripts of the female Aedes aegypti mosquitos feeding on naïve vs viremic mouse. While most transcripts (12,634) did not change their abundances, 360 transcripts showed decreases. Biological pathway analysis revealed representatives of the decreased transcripts involved in the wnt signaling pathway and hippo signaling pathway. One thousand three hundred fourteen transcripts showed increases in abundance and participate in 21 biological pathways including amino acid metabolism, carbon metabolism, fatty acid metabolism, and oxidative phosphorylation. Inhibition of oxidative phosphorylation with antimycin A reduced oxidative phosphorylation activity and ATP concentration associated with reduced DENV replication in the Aedes aegypti cells. Antimycin A did not affect the amounts of the non-structural proteins 3 and 5, two major components of the replication complex. Ribavirin, an agent that reduces GTP concentration, recapitulated the effects of reduced ATP concentration on DENV replication. Knocking down one of the oxidative phosphorylation components, ATP synthase subunit ß, reduced DENV replication in the mosquitos. In summary, our results suggest that DENV enhances metabolic pathways in the female Aedes aegypti mosquitos to supply nutrients and energy for virus replication. ATP synthase subunit ß knockdown might be exploited to reduce the mosquitos' competence to host and transmit DENV. IMPORTANCE: Through evolution, the mosquito-borne viruses have adapted to the blood-feeding behaviors of their opportunist hosts to fulfill a complete lifecycle in humans and mosquitos. Disruption in the mosquitos' ability to host these viruses offers strategies to prevent diseases caused by them. With the advent of genomic tools, we discovered that dengue virus (DENV) benefited from the female mosquitos' bloodmeals for metabolic and energetic supplies for replication. Chemical or genetic disruption in these supplies reduced DENV replication in the female mosquitos. Our discovery can be exploited to produce genetically modified mosquitos, in which DENV infection leads to disruption in the supplies and thereby reduces replication and transmission. Our discovery might be extrapolated to prevent mosquito-borne virus transmission and the diseases they cause.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Replicación Viral , Aedes/virología , Animales , Femenino , Virus del Dengue/fisiología , Dengue/transmisión , Dengue/virología , Dengue/metabolismo , Fosforilación Oxidativa , Ratones , Mosquitos Vectores/virología , Adenosina Trifosfato/metabolismo
5.
PNAS Nexus ; 3(5): pgae188, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38813522

RESUMEN

C-type lectins (CTLs) are a family of carbohydrate-binding proteins and an important component of mosquito saliva. Although CTLs play key roles in immune activation and viral pathogenesis, little is known about their role in regulating dengue virus (DENV) infection and transmission. In this study, we established a homozygous CTL16 knockout Aedes aegypti mutant line using CRISPR/Cas9 to study the interaction between CTL16 and viruses in mosquito vectors. Furthermore, mouse experiments were conducted to confirm the transmission of DENV by CTL16-/- A. aegypti mutants. We found that CTL16 was mainly expressed in the medial lobe of the salivary glands (SGs) in female A. aegypti. CTL16 knockout increased DENV replication and accumulation in the SGs of female A. aegypti, suggesting that CTL16 plays an important role in DENV transmission. We also found a reduced expression of immunodeficiency and Janus kinase/signal transducer and activator of transcription pathway components correlated with increased DENV viral titer, infection rate, and transmission efficiency in the CTL16 mutant strain. The findings of this study provide insights not only for guiding future investigations on the influence of CTLs on immune responses in mosquitoes but also for developing novel mutants that can be used as vector control tools.

6.
Biomed J ; : 100731, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677491

RESUMEN

BACKGROUND: Autoimmune hepatitis (AIH) is an immune-mediated hepatic disease associated with intense complications. AIH is more common in females and needs effective drugs to treat. Guizhi Fuling Wan (GZFLW) is a traditional Chinese herbal formula used to treat various gynecologic diseases. In this study, we aim to extend the new use of GZFLW for AIH. METHODS: The tandem MS-based analysis was used to identify secondary metabolites in GZFLW. Therapeutic effects of GZFLW were tested in a concanavalin A (Con A)-induced AIH model in mice. Ethnopharmacological mechanisms underlying the antiapoptotic, antioxidant, and immunomodulatory protective effects were determined. RESULTS: Oral administration of GZFLW attenuates AIH in a Con A-induced hepatotoxic model in vivo. The tandem MS-based analysis identified 15 secondary metabolites in GZFLW. The Con A-induced AIH syndromes, including hepatic apoptosis, inflammation, reactive oxygen species accumulation, function failure, and mortality, were significantly alleviated by GZFLW in mice. Mechanistically, GZFLW restrained the caspase-dependent apoptosis, restored the antioxidant system, and decreased pro-inflammatory cytokine production in the livers of Con A-treated mice. Besides, GZFLW repressed the Con A-induced hepatic infiltration of inflammatory cells, splenic T cell activation, and splenomegaly in mice. CONCLUSIONS: Our findings demonstrate the applicable potential of GZFLW in treating AIH. It prompts further investigation of GZFLW as a treatment option for AIH and possibly other hepatic diseases.

7.
J Adv Res ; 62: 229-243, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38548264

RESUMEN

INTRODUCTION: Overwhelming neutrophil activation and oxidative stress significantly contribute to acute respiratory distress syndrome (ARDS) pathogenesis. However, the potential of repurposing ribociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor used clinically in cancer treatment, for treating neutrophilic ARDS remains uncertain. This study illustrated the ability and underlying mechanism of ribociclib for treating ARDS and neutrophilic inflammation. METHODS: Primary human neutrophils were used to determine the therapeutic effects of ribociclib on respiratory bursts, chemotactic responses, and inflammatory signaling. In vitro and silico analyses were performed to determine the underlying molecular mechanisms. The potential of ribociclib repurposing was evaluated using an in vivo ARDS model in lipopolysaccharide (LPS)-primed mice. RESULTS: We found that treatment using ribociclib markedly limited overabundant oxidative stress (reactive oxygen species [ROS]) production and chemotactic responses (integrin levels and adhesion) in activated human neutrophils. Ribociclib was also shown to act as a selective inhibitor of phosphodiesterase 4 (PDE4), thereby promoting the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, leading to the inhibition of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) phosphorylation, and calcium influx. Notably, prophylactic administration and post-treatment with ribociclib ameliorated neutrophil infiltration, lung inflammation, accumulation of oxidative stress, pulmonary destruction, and mortality in mice with LPS-induced ARDS. CONCLUSION: We demonstrated for the first time that ribociclib serves as a novel PDE4 inhibitor for treating neutrophilic inflammation and ARDS. The repurposing ribociclib and targeting neutrophilic PDE4 offer a potential off-label alternative for treating lung lesions and other inflammatory conditions.


Asunto(s)
Aminopiridinas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Inflamación , Lipopolisacáridos , Neutrófilos , Inhibidores de Fosfodiesterasa 4 , Purinas , Síndrome de Dificultad Respiratoria , Aminopiridinas/farmacología , Purinas/farmacología , Animales , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Humanos , Ratones , Inflamación/tratamiento farmacológico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Masculino , AMP Cíclico/metabolismo , Transducción de Señal/efectos de los fármacos , Activación Neutrófila/efectos de los fármacos
8.
Parasit Vectors ; 17(1): 106, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439081

RESUMEN

BACKGROUND: Although whole-genome sequencing (WGS) is the preferred genotyping method for most genomic analyses, limitations are often experienced when studying genomes characterized by a high percentage of repetitive elements, high linkage, and recombination deserts. The Asian tiger mosquito (Aedes albopictus), for example, has a genome comprising up to 72% repetitive elements, and therefore we set out to develop a single-nucleotide polymorphism (SNP) chip to be more cost-effective. Aedes albopictus is an invasive species originating from Southeast Asia that has recently spread around the world and is a vector for many human diseases. Developing an accessible genotyping platform is essential in advancing biological control methods and understanding the population dynamics of this pest species, with significant implications for public health. METHODS: We designed a SNP chip for Ae. albopictus (Aealbo chip) based on approximately 2.7 million SNPs identified using WGS data from 819 worldwide samples. We validated the chip using laboratory single-pair crosses, comparing technical replicates, and comparing genotypes of samples genotyped by WGS and the SNP chip. We then used the chip for a population genomic analysis of 237 samples from 28 sites in the native range to evaluate its usefulness in describing patterns of genomic variation and tracing the origins of invasions. RESULTS: Probes on the Aealbo chip targeted 175,396 SNPs in coding and non-coding regions across all three chromosomes, with a density of 102 SNPs per 1 Mb window, and at least one SNP in each of the 17,461 protein-coding genes. Overall, 70% of the probes captured the genetic variation. Segregation analysis found that 98% of the SNPs followed expectations of single-copy Mendelian genes. Comparisons with WGS indicated that sites with genotype disagreements were mostly heterozygotes at loci with WGS read depth < 20, while there was near complete agreement with WGS read depths > 20, indicating that the chip more accurately detects heterozygotes than low-coverage WGS. Sample sizes did not affect the accuracy of the SNP chip genotype calls. Ancestry analyses identified four to five genetic clusters in the native range with various levels of admixture. CONCLUSIONS: The Aealbo chip is highly accurate, is concordant with genotypes from WGS with high sequence coverage, and may be more accurate than low-coverage WGS.


Asunto(s)
Aedes , Mosquitos Vectores , Humanos , Animales , Genotipo , Mosquitos Vectores/genética , Heterocigoto , Aedes/genética
9.
Seizure ; 117: 98-104, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364333

RESUMEN

PURPOSE: PAFAH1B1, also known as LIS1, is associated with type I lissencephaly in humans, which is a severe developmental brain disorder believed to result from abnormal neuronal migration. Our objective was to characterize the genotypes and phenotypes of PAFAH1B1-related epilepsy. METHODS: We conducted a comprehensive analysis of the medical histories, magnetic resonance imaging findings, and video-electroencephalogram recordings of 11 patients with PAFAH1B1 variants at the Neurology Department of Beijing Children's Hospital from June 2017 to November 2022. RESULTS: The age of onset of epilepsy ranged from 2 months to 4 years, with a median onset age of 5 months. Among these 11 patients (comprising 6 boys and 5 girls), all were diagnosed with lissencephaly type 1. Predominantly, generalized tonic-clonic and spasm seizures characterized PAFAH1B1-related epilepsy. Additionally, 10 out of the 11 patients exhibited severe developmental disorders. All patients exhibited de novo variants, with three individuals displaying 17p13.3 deletions linked to haploinsufficiency of PAFAH1B1. Four variants were previously unreported. Notably, three patients with 17p13.3 deletions displayed developmental delay and drug resistant epilepsy, whereas the single patient with mild developmental delay, Intelligence Quotient (IQ) 57 and well-controlled seizures had a splicing-site variant. CONCLUSION: The severity of the phenotype in patients with PAFAH1B1 variants ranged from drug-responsive seizures to severe epileptic encephalopathy. These observations underscore the clinical heterogeneity of PAFAH1B1-related disorders, with most patients exhibiting developmental disorders. Moreover, the severity of epilepsy appears to be linked to genetic variations.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , Epilepsia , Proteínas Asociadas a Microtúbulos , Humanos , Masculino , Femenino , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Preescolar , Lactante , Epilepsia/genética , Epilepsia/fisiopatología , Electroencefalografía , Fenotipo , Imagen por Resonancia Magnética , Discapacidades del Desarrollo/genética , Niño
10.
Mol Neurodegener ; 19(1): 12, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273330

RESUMEN

BACKGROUND: Mitochondrial dysfunction and toxic protein aggregates have been shown to be key features in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease (PD). Functional analysis of genes linked to PD have revealed that the E3 ligase Parkin and the mitochondrial kinase PINK1 are important factors for mitochondrial quality control. PINK1 phosphorylates and activates Parkin, which in turn ubiquitinates mitochondrial proteins priming them and the mitochondrion itself for degradation. However, it is unclear whether dysregulated mitochondrial degradation or the toxic build-up of certain Parkin ubiquitin substrates is the driving pathophysiological mechanism leading to PD. The iron-sulphur cluster containing proteins CISD1 and CISD2 have been identified as major targets of Parkin in various proteomic studies. METHODS: We employed in vivo Drosophila and human cell culture models to study the role of CISD proteins in cell and tissue viability as well as aged-related neurodegeneration, specifically analysing aspects of mitophagy and autophagy using orthogonal assays. RESULTS: We show that the Drosophila homolog Cisd accumulates in Pink1 and parkin mutant flies, as well as during ageing. We observed that build-up of Cisd is particularly toxic in neurons, resulting in mitochondrial defects and Ser65-phospho-Ubiquitin accumulation. Age-related increase of Cisd blocks mitophagy and impairs autophagy flux. Importantly, reduction of Cisd levels upregulates mitophagy in vitro and in vivo, and ameliorates pathological phenotypes in locomotion, lifespan and neurodegeneration in Pink1/parkin mutant flies. In addition, we show that pharmacological inhibition of CISD1/2 by rosiglitazone and NL-1 induces mitophagy in human cells and ameliorates the defective phenotypes of Pink1/parkin mutants. CONCLUSION: Altogether, our studies indicate that Cisd accumulation during ageing and in Pink1/parkin mutants is a key driver of pathology by blocking mitophagy, and genetically and pharmacologically inhibiting CISD proteins may offer a potential target for therapeutic intervention.


Asunto(s)
Proteínas de Drosophila , Enfermedad de Parkinson , Animales , Humanos , Anciano , Mitofagia/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Mitocondriales/metabolismo , Drosophila/metabolismo , Mitocondrias/metabolismo , Ubiquitinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Drosophila/genética
11.
Cell Death Dis ; 15(1): 71, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238337

RESUMEN

Alzheimer's disease (AD), an age-related progressive neurodegenerative disorder, exhibits reduced cognitive function with no cure to date. One of the reasons for AD is the accumulation of Amyloid-beta 42 (Aß42) plaque(s) that trigger aberrant gene expression and signaling, which results in neuronal cell death by an unknown mechanism(s). Misexpression of human Aß42 in the developing retina of Drosophila exhibits AD-like neuropathology. Small non-coding RNAs, microRNAs (miRNAs), post-transcriptionally regulate the expression of their target genes and thereby regulate different signaling pathways. In a forward genetic screen, we identified miR-277 (human ortholog is hsa-miR-3660) as a genetic modifier of Aß42-mediated neurodegeneration. Loss-of-function of miR-277 enhances the Aß42-mediated neurodegeneration. Whereas gain-of-function of miR-277 in the GMR > Aß42 background downregulates cell death to maintain the number of neurons and thereby restores the retinal axonal targeting defects indicating the functional rescue. In addition, gain-of-function of miR-277 rescues the eclosion- and climbing assays defects observed in GMR > Aß42 background. Thus, gain-of-function of miR-277 rescues both structurally as well as functionally the Aß42-mediated neurodegeneration. Furthermore, we identified head involution defective (hid), an evolutionarily conserved proapoptotic gene, as one of the targets of miR-277 and validated these results using luciferase- and qPCR -assays. In the GMR > Aß42 background, the gain-of-function of miR-277 results in the reduction of hid transcript levels to one-third of its levels as compared to GMR > Aß42 background alone. Here, we provide a novel molecular mechanism where miR-277 targets and downregulates proapoptotic gene, hid, transcript levels to rescue Aß42-mediated neurodegeneration by blocking cell death. These studies shed light on molecular mechanism(s) that mediate cell death response following Aß42 accumulation seen in neurodegenerative disorders in humans and provide new therapeutic targets for neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Axones/metabolismo , Drosophila/metabolismo , MicroARNs/metabolismo , Fragmentos de Péptidos/metabolismo
12.
Int J Biometeorol ; 68(1): 133-141, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950095

RESUMEN

Dengue is one of the world's most rapidly spreading mosquito-borne viral diseases. As it is found mostly in urban and semi-urban areas, urbanization and associated human activities that affect the environment and larval habitats could become risk factors (e.g., lane width, conditions of street ditches) for the spread of dengue. However, there are currently no systematic studies of micro-scale urbanization-based risk factors for the spread of dengue epidemics. We describe the study area, two micro-scale environmental risk factors associated with urbanization, and meteorological data. Since the observations involve spatial and temporal correlations, we also use some statistical methods for the analysis of spatial and spatial-temporal data for the relationship between urbanization and dengue. In this study, we analyzed data from Kaohsiung, a densely populated city in southern Taiwan, and found a positive correlation between environmental risk factors associated with urbanization (ditches positive for mosquito larvae and closely packed streets termed "dengue lanes") and clustering effects in dengue cases. The statistical analysis also revealed that the occurrence of positive ditches was significantly associated with that of dengue lanes in the study area. The relationship between climate variables and positive ditches was also analyzed in this paper, indicating a relationship between dengue and both rainfall and temperature, with temperature having a greater effect. Overall, this work is immediately relevant and applicable for policymakers in government, who will need to reduce these favorable habitats for vector-born disease spreaders and implement regulations for new urban constructions to thus reduce dengue spread in future outbreaks.


Asunto(s)
Dengue , Epidemias , Animales , Humanos , Urbanización , Dengue/epidemiología , Ciudades/epidemiología , Factores de Riesgo , Larva
13.
Eur J Med Res ; 28(1): 482, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932817

RESUMEN

BACKGROUND: Dengue virus serotype 2 (DENV-2) was the major serotype in the 2015 dengue outbreak in Taiwan, while DENV-1 and DENV-3 were dominant between 2005 and 2014. We aimed to investigate whether DENV-2 contributed to disease severity and mortality in the outbreak in Kaohsiung city, Taiwan. METHODS: We collected serum samples from dengue patients to detect the presence of DENV and determine the serotypes by using quantitative reverse transcription-polymerase chain reaction. Our cohorts comprised 105 DENV-1-infected cases and 1,550 DENV-2-infected cases. Demographic data, DENV serotype, and comorbidities were covariates for univariate and multivariate analyses to explore the association with severity and mortality. RESULTS: The results suggested that DENV-1 persisted and circulated, while DENV-2 was dominant during the dengue outbreak that occurred between September and December 2015. However, DENV-2 did not directly contribute to either severity or mortality. Aged patients and patients with diabetes mellitus (DM) or moderate to severe chronic kidney disease (CKD) had a higher risk of developing severe dengue. The mortality of dengue patients was related to a higher Charlson comorbidity index score and severe dengue. Among DENV-2-infected patients and older patients, preexisting anti-dengue IgG, DM, and moderate to severe CKD were associated with severe dengue. Moreover, female sex and severe dengue were associated with a significantly higher risk of death. CONCLUSIONS: Our findings highlight the importance of timely serological testing in elderly patients to identify potential secondary infections and focus on the meticulous management of elderly patients with DM or moderate to severe CKD to reduce dengue-related death.


Asunto(s)
Virus del Dengue , Dengue , Insuficiencia Renal Crónica , Dengue Grave , Anciano , Humanos , Femenino , Serogrupo , Dengue/diagnóstico , Dengue/epidemiología , Dengue Grave/epidemiología , Taiwán/epidemiología , Brotes de Enfermedades , Insuficiencia Renal Crónica/epidemiología
14.
Sci Rep ; 13(1): 16583, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789031

RESUMEN

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in October 2021, possessed many mutations compared to previous variants. We aimed to identify and analyze SARS-CoV-2 Omicron subvariants among coronavirus disease 2019 (COVID-19) patients between January 2022 and September 2022 in Taiwan. The results revealed that BA.2.3.7, featuring K97E and G1251V in the spike protein compared with BA.2, emerged in March 2022 and persistently dominated between April 2022 and August 2022, resulting in the largest COVID-19 outbreak since 2020. The accumulation of amino acid (AA) variations, mainly AA substitution, in the spike protein was accompanied by increasing severity in Omicron-related COVID-19 between April 2022 and January 2023. Older patients were more likely to have severe COVID-19, and comorbidity was a risk factor for COVID-19-related mortality. The accumulated case fatality rate (CFR) dropped drastically after Omicron variants, mainly BA.2.3.7, entered Taiwan after April 2022, and the CFR was 0.16% in Taiwan, which was lower than that worldwide (0.31%) between April 2021 and January 2023. The relatively low CFR in Omicron-related COVID-19 patients can be attributed to adjustments to public health policies, promotion of vaccination programs, effective antiviral drugs, and the lower severity of the Omicron variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Taiwán/epidemiología , Glicoproteína de la Espiga del Coronavirus
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(9): 923-928, 2023.
Artículo en Chino | MEDLINE | ID: mdl-37718397

RESUMEN

OBJECTIVES: To investigate the electroencephalogram (EEG) characteristics and progression of febrile infection-related epilepsy syndrome (FIRES) in children, aiming to enhance diagnosis and treatment approaches. METHODS: A retrospective analysis was conducted on 26 children with FIRES between May 2017 and December 2021. RESULTS: All 26 children (100%) presented with fever at the onset, followed by frequent convulsions that rapidly progressed into convulsive status. Ventilator support was required for 22 cases (85%). During the acute phase, EEG features demonstrated the disappearance of background activity and physiological sleep cycles in all children. Diffuse slow waves and multifocal slow spike slow waves were observed as abnormal waves during the interictal period. A characteristic pattern of focal low amplitude fast wave initiation was detected in all children during seizure episodes. In the chronic phase, the background EEG activity gradually recovered, and the presence of abnormal waves was relatively limited. The characteristic pattern of focal slow wave rhythm initiation was evident during seizure episodes. Additionally, extreme δ brushes were observed in four cases (15%). CONCLUSIONS: These findings suggest that EEG manifestations in children with FIRES exhibit distinctive patterns during the acute and chronic stages, providing significant value for early diagnosis and clinical staging. Extreme δ brushes may be one of the distinctive markers of children with FIRES.

16.
Epilepsia ; 64(10): 2667-2678, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37522416

RESUMEN

OBJECTIVE: Bone metabolism can be influenced by a range of factors. We selected children with self-limited epilepsy with centrotemporal spikes (SeLECTS) and lifestyles similar to those of healthy children to control for the confounding factors that may influence bone metabolism. We aimed to identify the specific effects of epilepsy and/or anti-seizure medications (ASMs) on bone metabolism. METHODS: Patients with SeLECTS were divided into an untreated group and a monotherapy group, and the third group was a healthy control group. We determined the levels of various biochemical markers of bone metabolism, including procollagen type I nitrogenous propeptide (PINP), alkaline phosphatase (ALP), osteocalcin (OC), collagen type I cross-linked C-telopeptide (CTX), calcium, magnesium, phosphorus, parathyroid hormone (PTH), and vitamin D3 (VD3 ). RESULTS: A total of 1487 patients (from 19 centers) were diagnosed with SeLECTS; 1032 were analyzed, including 117 patients who did not receive any ASMs (untreated group), 643 patients who received only one ASM (monotherapy group), and 272 children in the healthy control group. Except for VD3 , other bone metabolism of the three groups were different (p < .001). Bone metabolism was significantly lower in the untreated group than the healthy control group (p < .05). There were significant differences between the monotherapy and healthy control group in the level of many markers. However, when comparing the monotherapy and untreated groups, the results were different; oxcarbazepine, levetiracetam, and topiramate had no significant effect on bone metabolism. Phosphorus and magnesium were significantly lower in the valproic acid group than the untreated group (adjusted p < .05, Cliff's delta .282-.768). CTX was significantly higher in the lamotrigine group than in the untreated group (adjusted p = .012, Cliff's delta = .316). SIGNIFICANCE: Epilepsy can affect many aspects of bone metabolism. After controlling epilepsy and other confounders that affect bone metabolism, we found that the effects of ASMs on bone metabolism differed. Oxcarbazepine, levetiracetam, and topiramate did not affect bone metabolism, and lamotrigine corrected some of the abnormal markers of bone metabolism in patients with epilepsy.

17.
RMD Open ; 9(3)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37479495

RESUMEN

OBJECTIVES: We aimed to investigate the role of rheumatoid arthritis (RA) with biologic or targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARD) exposure in COVID-19 outcomes. METHODS: Our study retrieved data from the US Collaborative Network in TriNetX between 1 January 2018 and 31 December 2022. We investigated b/tsDMARD use for RA: interleukin 6 inhibitor (IL-6i), Janus-associated kinase inhibitors (JAKi) or tumour necrosis factor-alpha inhibitors (TNFi, reference group). The outcomes of COVID-19 were the incidence of infection and adverse outcomes (hospitalisation, critical care services, mechanical ventilation and mortality). The HR and 95% CI of the outcomes were calculated between propensity score-matched (PSM) patients with different b/tsDMARDs. RESULTS: After PSM, 2676 JAKi vs 2676 TNFi users and 967 IL-6i vs 967 TNFi users were identified. As for COVID-19 incidence, JAKi users did not reach statistical significance (HR: 1.058, 95% CI: 0.895 to 1.250) than TNFi users. RA with JAKi users had a significant risk for hospitalisation (HR: 1.194, 95% CI: 1.003 to 1.423), mortality (HR: 1.440, 95% CI: 1.049 to 1.976) and composite adverse outcomes (HR: 1.242, 95% CI: 1.051 to 1.468) compared with TNFi users. Mortality risk tended to be significantly higher in the JAKi group without COVID-19 vaccination (HR: 1.511, 95% CI: 1.077 to 2.121). IL-6i users compared with TNFi users did not have the above findings. CONCLUSIONS: RA with JAKi users had a significant risk for hospitalisation, mortality or composite adverse outcomes, especially higher mortality among those without COVID-19 vaccination. COVID-19 vaccination should be encouraged in these target cohorts. When using JAKi for patients with RA, clinicians should be vigilant about these adverse outcomes to prevent their occurrence or detect them early for early intervention.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , COVID-19 , Inhibidores de las Cinasas Janus , Humanos , COVID-19/epidemiología , Vacunas contra la COVID-19 , Antirreumáticos/efectos adversos , Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Cuidados Críticos , Inhibidores de las Cinasas Janus/efectos adversos
18.
EBioMedicine ; 94: 104723, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487418

RESUMEN

BACKGROUND: Dengue virus outbreaks are increasing in number and severity worldwide. Viral transmission is assumed to require a minimum time period of viral replication within the mosquito midgut. It is unknown if alternative transmission periods not requiring replication are possible. METHODS: We used a mouse model of dengue virus transmission to investigate the potential of mechanical transmission of dengue virus. We investigated minimal viral titres necessary for development of symptoms in bitten mice and used resulting parameters to inform a new model of dengue virus transmission within a susceptible population. FINDINGS: Naïve mice bitten by mosquitoes immediately after they took partial blood meals from dengue infected mice showed symptoms of dengue virus, followed by mortality. Incorporation of mechanical transmission into mathematical models of dengue virus transmission suggest that this supplemental transmission route could result in larger outbreaks which peak sooner. INTERPRETATION: The potential of dengue transmission routes independent of midgut viral replication has implications for vector control strategies that target mosquito lifespan and suggest the possibility of similar mechanical transmission routes in other disease-carrying mosquitoes. FUNDING: This study was funded by grants from the National Health Research Institutes, Taiwan (04D2-MMMOST02), the Human Frontier Science Program (RGP0033/2021), the National Institutes of Health (1R01AI143698-01A1, R01AI151004 and DP2AI152071) and the Ministry of Science and Technology, Taiwan (MOST104-2321-B-400-016).


Asunto(s)
Aedes , Virus del Dengue , Dengue , Humanos , Animales , Ratones , Dengue/epidemiología , Brotes de Enfermedades , Mosquitos Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA