Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052934

RESUMEN

Arsinothricin is a potent antibiotic secreted by soil bacteria. The biosynthesis of arsinothricin was proposed to involve a C-As bond formation between trivalent As and the 3-amino-3-carboxypropyl (ACP) group of S-adenosyl-l-methionine (SAM), which is catalyzed by the protein ArsL. However, ArsL has not been characterized in detail. Interestingly, ArsL contains a CxxxCxxC motif and thus belongs to the radical SAM enzyme superfamily, the members of which cleave SAM and generate a 5'-deoxyadenosyl radical. Here, we found that ArsL cleaves the Cγ,Met-S bond of SAM and generates an ACP radical that resembles Dph2, a noncanonical radical SAM enzyme involved in diphthamid biosynthesis. As Dph2 does not contain the CxxxCxxC motif, ArsL is a unique radical SAM enzyme that contains this motif but generates a noncanonical ACP radical. Together with the methyltransferase ArsM, we successfully reconstituted arsinothricin biosynthesis in vitro. ArsL has a conserved RCCLKC motif in the C-terminal sequence and belongs to the RCCLKC-tail radical SAM protein subfamily. By truncation and mutagenesis, we showed that this motif plays an important role in binding to the substrate arsenite and is highly important for its activity. Our results suggested that ArsL has a canonical radical SAM enzyme motif but catalyzes a noncanonical radical SAM reaction, implying that more noncanonical radical SAM chemistry may exist within the radical SAM enzyme superfamily.

2.
J Environ Manage ; 365: 121610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955048

RESUMEN

Effective elimination of heavy metals from complex wastewater is of great significance for industrial wastewater treatment. Herein, bimetallic adsorbent Fe3O4-CeO2 was prepared, and H2O2 was added to enhance Sb(V) adsorption by Fe3O4-CeO2 in complex wastewater of Sb(V) and aniline aerofloat (AAF) for the first time. Fe3O4-CeO2 showed good adsorption performance and could be rapidly separated by external magnetic field. After five adsorption/desorption cycles, Fe3O4-CeO2 still maintained good stability. The maximum adsorption capacities of Fe3O4-CeO2 in single Sb(V), AAF + Sb(V), and H2O2+AAF + Sb(V) systems were 77.33, 70.14, and 80.59 mg/g, respectively. Coexisting AAF inhibited Sb(V) adsorption. Conversely, additional H2O2 promoted Sb(V) removal in AAF + Sb(V) binary system, and made the adsorption capacity of Fe3O4-CeO2 increase by 14.90%. H2O2 could not only accelerate the reaction rate, but also reduce the optimal amount of adsorbent from 2.0 g/L to 1.2 g/L. Meanwhile, coexisting anions had little effect on Sb(V) removal by Fe3O4-CeO2+H2O2 process. The adsorption behaviors of Sb(V) in three systems were better depicted by pseudo-second-order kinetics, implying that the chemisorption was dominant. The complexation of AAF with Sb(V) hindered the adsorption of Sb(V) by Fe3O4-CeO2. The complex Sb(V) was oxidized and decomposed into free state by hydroxyl radicals produced in Fe3O4-CeO2+H2O2 process. Then the free Sb(V) was adsorbed by Fe3O4-CeO2 mostly through outer-sphere complexation. This work provides a new tactic for the treatment of heavy metal-organics complex wastewater.


Asunto(s)
Peróxido de Hidrógeno , Aguas Residuales , Aguas Residuales/química , Peróxido de Hidrógeno/química , Adsorción , Contaminantes Químicos del Agua/química , Compuestos de Anilina/química , Cerio/química
3.
Environ Sci Pollut Res Int ; 31(33): 45522-45536, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967848

RESUMEN

Carbon emission accounting is the basic premise of effective carbon emission reduction and management. This study aimed to establish the carbon emission model and performance evaluation framework of coal mine production enterprises and clarify the low-carbon development path of enterprises. In this study, we took a typical coal production enterprise (K enterprise) in the Shanxi province of China as the research object. We also estimated the carbon emissions of the enterprise mainly according to the Chinese Carbon Emission Accounting Standard (GB/T 32151.11-2018). The triangular model was used to construct the carbon performance evaluation framework. On this basis, we suggested the enterprise's low-carbon development path. The results showed that (1) the carbon emission of K enterprise in 2021 was 36,875.38 tCO2eq; the carbon emission intensity of each ton of coal produced was 0.089 tCO2eq. The critical carbon emissions were electricity consumption and methane fugitive emissions during production. (2) The evaluation indicators for carbon emission performance revealed an imbalance in K enterprise's economic, energy, and environmental development in 2021. The work on energy saving and consumption reduction was relatively weak. (3) Countermeasures for low-carbon development, including a carbon emission ledger, were proposed based on carbon emission accounting and performance evaluation results. This study can help typical underground coal production enterprises in Shanxi province obtain more accurate carbon emission data, providing practical guidance and reference for the same underground coal production enterprises to improve the carbon emission control effect.


Asunto(s)
Carbono , Carbón Mineral , China , Monitoreo del Ambiente , Minas de Carbón , Contaminantes Atmosféricos/análisis , Pueblos del Este de Asia
4.
Micromachines (Basel) ; 15(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39064426

RESUMEN

Two-dimensional ultrasonic-assisted grinding (2D-UAG) has exhibited advantages in improving the machining quality of hard and brittle materials. However, the grinding mechanism in this process has not been thoroughly revealed due to the complicated material removal behaviors. In this study, multi-step 2D-UAG experiments of silicon carbide are conducted to investigate the effects of machining parameters on surface quality. The experimental results demonstrate that the tool amplitude and the workpiece amplitude have similar effects on surface roughness. In the rough grinding stage, the surface roughness decreases continuously with increasing ultrasonic amplitudes and the material is mainly removed by brittle fracture with different surface defects. Under semi-finishing and finishing grinding steps, the surface roughness first declines and then increases as the tool amplitude or workpiece amplitude grows from 0 µm to 8 µm and the inflection point appears around 4 µm. The surface damage contains small-sized pits with band-like distribution and localized grooves. Furthermore, the influences of cutting parameters on surface quality are similar to those in conventional grinding. Discussions of the underlying mechanisms for the experimental phenomena are also provided based on kinematic analysis. The conclusions gained in this study can provide references for the optimization of machining parameters in 2D-UAG of hard and brittle materials.

5.
PLoS One ; 19(7): e0306368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39083557

RESUMEN

The medium-intensity karst desertification environment is typically characterized by more rocks and less soil. The abandoned land in the construction areas of the dry-hot river valley hydropower station has more infertile soil, severe land degradation, and very low land productivity. Therefore, it is urgent to improve the soil quality to curb the increasingly degrading land and reuse the construction site. Few studies have focused on the effect of soil restoration and comprehensive evaluation of soil quality with multi-treatment in abandoned land in the dry-hot valley hydropower station construction area. Here, 9 soil restoration measures and 1 control group were installed at the Guangzhao Hydropower Station construction in Guizhou Province, China, for physical and chemical property analysis. In total, 180 physical and 90 chemical soil samples were collected on three occasions in May, August, and December 2022. Soil fertility and quality were evaluated under various measures using membership functions and principal component analysis (PCA). This study showed that almost all measures could enhance soil water storage capacity (The average total soil porosity of 9 soil treatments was 57.56%, while that of the control group was 56.37%). With the increase in soil porosity, soil evaporation became stronger, and soil water content decreased. Nevertheless, no decrease in soil water content was observed in the presence of vegetation cover (soil water content: 16.46% of hairy vetch, 13.99% of clover, 13.77% of the control). They also proved that manure, synthetic fertilizer, and straw could promote total and available nutrients (Soil total nutrient content, or the total content of TN、TP、TK,was presented as: synthetic fertilizer (11.039g kg-2)>fowl manure (10.953g kg-2)>maize straw (10.560g kg-2)>control (9.580g kg-2);Total available nutrient content in soil, or the total content of AN,AP,A,was shown as:fowl manure (1287.670 mg kg-1)>synthetic fertilizer (925.889 mg kg-1)>sheep manure (825.979 mg kg-1)>control (445.486 mg kg-1). They could also promote soil fertility, among which the first two reached the higher comprehensive soil quality. Fertilizer was conducive to improve soil quality and fertility, yet long-term application could cause land degradation like soil non-point source pollution, compaction, and land productivity decline. Ultimately, combining fertilizer with biochar or manure is recommended to improve soil fertility. Biochar and green manure could play an apparent role in soil improvement only when there is abundant soil water. The above views provide theoretical support for curbing soil degradation, improving soil fertility and quality, enhancing land productivity, and promoting the virtuous cycle of the soil ecosystem.


Asunto(s)
Conservación de los Recursos Naturales , Suelo , Suelo/química , China , Conservación de los Recursos Naturales/métodos , Agua/análisis , Agua/química , Fertilizantes/análisis
6.
Adv Nutr ; : 100272, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009081

RESUMEN

Magnesium (Mg) plays a key role in neurological functioning and manifestations. However, the evidence from randomized controlled trials (RCTs) and cohorts on Mg and cognitive health among adults has not been systematically reviewed. We aimed to examine the associations of various Mg forms (supplements, dietary intake, and biomarkers) with cognitive outcomes by summarizing evidence from RCTs and cohorts. PubMed, Embase, PsycINFO, and the Cochrane Central Register of Controlled Trials were searched for relevant peer-reviewed articles published up to May 3, 2024. Three random-effects models were performed, when appropriate, to evaluate the relationship between Mg and cognitive outcomes: 1) linear meta-regression, 2) nonlinear (quadratic) meta-regression, and 3) meta-analysis using Mg variables categorized based on pre-existing recommendations. Three RCTs and 12 cohort studies were included in this systematic review. Evidence from the limited number of RCTs was insufficient to draw conclusions on the effects of Mg supplements. Cohort studies showed inconsistent dose-response relationships between dietary Mg and cognitive disorders, with high heterogeneity across populations. However, consistent U-shape associations of serum Mg with all-cause dementia and cognitive impairment were found in cohorts, suggesting an optimal serum Mg concentration of ∼0.85 mmol/L. This nonlinear association was detected in meta-regression (Pquadratic = 0.003) and in meta-analysis based on the reference interval of serum Mg (0.75-0.95 mmol/L) [<0.75 compared with 0.85 mmol/L: pooled hazard ratio (HR) = 1.43; 95% confidence interval (CI) = 1.05, 1.93; >0.95 compared with 0.85 mmol/L: pooled HR = 1.30; 95% CI = 1.03, 1.64]. More evidence from RCTs and cohorts is warranted. Future cohort studies should evaluate various Mg biomarkers and collect repeated measurements of Mg intake over time, considering different sources (diet or supplements) and factors affecting absorption (for example, calcium-to-Mg intake ratio). This systematic review was preregistered in PROSPERO (CRD42023423663).

7.
Methods Mol Biol ; 2805: 19-30, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008172

RESUMEN

Transformed lung organoids have extensive applications in lung cancer modeling and drug screening. Traditional two-dimensional (2D) cultures fail to propagate a large subpopulation of murine primary tumors in vitro. However, three-dimensional (3D) air-liquid interface (ALI) cultures, which are employed to grow normal lung organoids, can be used to efficiently culture cancerous lung tumor cells. Here, we detail a procedure for cultivating genetically modified lung organoids in 3D-ALI cultures. This protocol contains two parts. The first part describes how to transduce lung epithelial cells, which are either freshly sorted from lungs or from actively growing murine organoids, with virus in order to modify gene expression. The target lung cells are incubated with virus for 1-2 h for transduction. Then, the transduced cells are thoroughly washed and mixed with stromal support cells and Matrigel and are loaded into transwell inserts for culture and validated for genetic modifications through downstream assays. The second part describes how to isolate tumor cells growing orthotopically in genetically engineered mouse models to produce organoid cell lines that can be used for ex vivo drug discovery assays. For this protocol, tumors are isolated from lungs of mice, finely chopped and washed. Then, tumor chunks are mixed with Matrigel for 3D-ALI culture. Finally, organoids budding from tumor chunks are trypsinized and passaged to establish an organoid line. Together these two protocols provide a promising platform to study the genesis, progression, and treatment of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Organoides , Organoides/citología , Animales , Ratones , Pulmón/citología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Técnicas de Cultivo Tridimensional de Células/métodos , Humanos , Técnicas de Cultivo de Célula/métodos , Células Epiteliales/citología , Transducción Genética/métodos
8.
J Chem Theory Comput ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078082

RESUMEN

Biomolecules composed of a limited set of chemical building blocks can colocalize into distinct, spatially segregated compartments known as biomolecular condensates. While many condensates are known to form spontaneously via phase separation, it has been unclear how immiscible condensates with precisely controlled molecular compositions assemble from a small number of chemical building blocks. We address this question by establishing a connection between the specificity of biomolecular interactions and the thermodynamic stability of coexisting condensates. By computing the minimum interaction specificity required to assemble condensates with target molecular compositions, we show how to design heteropolymer mixtures that produce compositionally complex condensates by using only a small number of monomer types. Our results provide insight into how compositional specificity arises in naturally occurring multicomponent condensates and demonstrate a rational algorithm for engineering complex artificial condensates from simple chemical building blocks.

9.
Int J Biol Macromol ; 277(Pt 2): 134231, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074699

RESUMEN

To investigate the impact of chlorantraniliprole on Procambarus clarkii, acute toxicity tests were performed. Results indicated that 96 h post-exposure to chlorantraniliprole (60 mg/L) led to the separation of the hepatopancreas basement membrane, causing cell swelling, rupture, and vacuolation. Moreover, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities exhibited divergent trends across four concentrations of chlorantraniliprole (0, 30, 60, and 90 mg/L). Hydrogen peroxide (H2O2) and catalase (CAT) levels significantly increased, while total superoxide dismutase (T-SOD) and malonaldehyde (MDA) activities decreased, indicating oxidative stress in the hepatopancreas. A total of 276 differentially expressed genes (DEGs) were identified, with 204 up-regulated and 72 down-regulated. Out of these, 114 DEGs were successfully annotated and classified into 99 pathways, with a primary focus on the cytochrome P450-mediated xenobiotic metabolism pathway. The DEGs enriched in this pathway, along with transcriptome data, were validated using quantitative-polymerase chain reaction. This study enhances the transcriptome database of P. clarkii and provides fundamental insights into its immune defense and antioxidant mechanisms. Additionally, it lays a theoretical foundation for future research on disease prevention in P. clarkii within rice-shrimp culture systems.

10.
PeerJ Comput Sci ; 10: e2053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855243

RESUMEN

Existing global adversarial attacks are not applicable to real-time optical remote sensing object detectors based on the YOLO series of deep neural networks, which makes it difficult to improve the adversarial robustness of single-stage detectors. The existing methods do not work well enough in optical remote sensing images, which may be due to the mechanism of adversarial perturbations is not suitable. Therefore, an adaptive deformation method (ADM) was proposed to fool the detector into generating wrong predicted bounding boxes. Building upon this, we introduce the Adaptive Deformation Method Iterative Fast Gradient Sign Method (ADM-I-FGSM) and Adaptive Deformation Mechanism Projected Gradient Descent (ADM-PGD) against YOLOv4 and YOLOv5. ADM method can obtain the deformation trend values based on the length-to-width ratio of the prediction box, and the adversarial perturbation trend generated based on these trend values has better adversarial effect. Through experiments, we validate that our approach exhibits a higher adversarial success rate compared to the state-of-the-art methods. We anticipate that our unveiled attack scheme will aid in the evaluation of adversarial resilience of these models.

11.
Nano Lett ; 24(23): 7134-7141, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38828962

RESUMEN

The coexistence of superconductivity and ferromagnetism is a long-standing issue in superconductivity due to the antagonistic nature of these two ordered states. Experimentally identifying and characterizing novel heterointerface superconductors that coexist with magnetism presents significant challenges. Here, we report the observation of two-dimensional long-range ferromagnetic order in a KTaO3 heterointerface superconductor, showing the coexistence of superconductivity and ferromagnetism. Remarkably, our direct current superconducting quantum interference device measurements reveal an in-plane magnetization hysteresis loop persisting above room temperature. Moreover, first-principles calculations and X-ray magnetic circular dichroism measurements provide decisive insights into the origin of the observed robust ferromagnetism, attributing it to oxygen vacancies that localize electrons in nearby Ta 5d states. Our findings suggest KTaO3 heterointerfaces as time-reversal symmetry breaking superconductors, injecting fresh momentum into the exploration of the intricate interplay between superconductivity and magnetism enhanced by the strong spin-orbit coupling inherent to the heavy Ta in 5d orbitals.

12.
Cancer Nurs ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830054

RESUMEN

BACKGROUND: Perceived cognitive impairment is a significant symptom experienced by breast cancer patients and may be affected by sleep quality. Coping styles have potential relevancies with both sleep quality and perceived cognitive impairment. However, the empirical evidence supporting their association among breast cancer patients is limited. OBJECTIVE: This study explored the associations between sleep quality, coping styles, and perceived cognitive impairment and tested the mediating role of coping styles in breast cancer patients. METHODS: A total of 294 breast cancer patients were included in this cross-sectional study. Patients were assessed using the Pittsburgh Sleep Index Scale, the Simplified Coping Styles Questionnaire, and the Functional Assessment of Cancer Therapy-Cognitive Functioning (Version 3) Scale. The data were analyzed using SPSS and Process macros. RESULTS: The direct effect of sleep quality on reported cognitive impairment was significant (ß = -0.245, P < .001). Furthermore, sleep quality was found to have a significant indirect effect on perceived cognitive impairment through positive coping style (ß = -0.026, P < .05) and negative coping style (ß = -0.131, P < .05). CONCLUSIONS: Our research suggests that sleep quality has both a direct effect on perceived cognitive impairment and an indirect effect through positive and negative coping styles in breast cancer patients. Moreover, negative coping style had a more pronounced mediating effect than positive coping style. IMPLICATIONS FOR PRACTICE: Clinical medical staff could reduce the perceived cognitive impairment of breast cancer patients by improving their sleep quality and encouraging them to adopt a more positive coping style.

13.
J Hazard Mater ; 475: 134906, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889455

RESUMEN

The alternating current (AC)-driven bioelectrochemical process, in-situ coupling cathodic reduction and anodic oxidation in a single electrode, offers a promising way for the mineralization of refractory aromatic pollutants (RAPs). Frequency modulation is vital for aligning reduction and oxidation phases in AC-driven bioelectrodes, potentially enhancing their capability to mineralize RAPs. Herein, a frequency-modulated AC-driven bioelectrode was developed to enhance RAP mineralization, exemplified by the degradation of Alizarin Yellow R (AYR). Optimal performance was achieved at a frequency of 1.67 mHz, resulting in the highest efficiency for AYR decolorization and subsequent mineralization of intermediates. Performance declined at both higher (3.33 and 8.30 mHz) and lower (0.83 mHz) frequencies. The bioelectrode exhibited superior electron utilization, bidirectional electron transfer, and redox bifunctionality, effectively aligning reduction and oxidation processes to enhance AYR mineralization. The 1.67 mHz frequency facilitated the assembly of a collaborative microbiome dedicated to AYR bio-mineralization, characterized by an increased abundance of functional consortia proficient in azo dye reduction (e.g., Stenotrophomonas and Shinella), aromatic intermediates oxidation (e.g., Sphingopyxis and Sphingomonas), and electron transfer (e.g., Geobacter and Pseudomonas). This study reveals the role of frequency modulation in AC-driven bioelectrodes for enhanced RAP mineralization, offering a novel and sustainable approach for treating RAP-bearing wastewater.


Asunto(s)
Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Compuestos Azo/química , Colorantes/química , Técnicas Electroquímicas , Antraquinonas/química
14.
Biochem Biophys Res Commun ; 725: 150272, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901224

RESUMEN

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, induces deficits in cognition and information processing following chronic abuse. Adolescent ketamine misuse represents a significant global public health issue; however, the neurodevelopmental mechanisms underlying this phenomenon remain largely elusive. This study investigated the long-term effects of sub-chronic ketamine (Ket) administration on the medial prefrontal cortex (mPFC) and associated behaviors. In this study, Ket administration during early adolescence displayed a reduced density of excitatory synapses on parvalbumin (PV) neurons persisting into adulthood. However, the synaptic development of excitatory pyramidal neurons was not affected by ketamine administration. Furthermore, the adult Ket group exhibited hyperexcitability and impaired socialization and working memory compared to the saline (Sal) administration group. These results strongly suggest that sub-chronic ketamine administration during adolescence results in functional deficits that persist into adulthood. Bioinformatic analysis indicated that the gene co-expression module1 (M1) decreased expression after ketamine exposure, which is crucial for synapse development in inhibitory neurons during adolescence. Collectively, these findings demonstrate that sub-chronic ketamine administration irreversibly impairs synaptic development, offering insights into potential new therapeutic strategies.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Ketamina , Parvalbúminas , Corteza Prefrontal , Sinapsis , Animales , Ketamina/farmacología , Ketamina/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Parvalbúminas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Masculino , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Ratones Endogámicos C57BL , Antagonistas de Aminoácidos Excitadores/farmacología
15.
ACS Nano ; 18(27): 18058-18070, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38922290

RESUMEN

CRISPR/Cas systems have been widely employed for nucleic acid biosensing and have been further advanced for mutation detection by virtue of the sequence specificity of crRNA. However, existing CRISPR-based genotyping methods are limited by the mismatch tolerance of Cas effectors, necessitating a comprehensive screening of crRNAs to effectively distinguish between wild-type and point-mutated sequences. To circumvent the limitation of conventional CRISPR-based genotyping, here, we introduce Single-Molecule kinetic Analysis via a Real-Time digital CRISPR/Cas12a-assisted assay (SMART-dCRISPR). SMART-dCRISPR leverages the differential kinetics of the signal increase in CRISPR/Cas systems, which is modulated by the complementarity between crRNA and the target sequence. It employs single-molecule digital measurements to discern mutations based on kinetic profiles that could otherwise be obscured by variations in the target concentrations. We applied SMART-dCRISPR to genotype notable mutations in SARS-CoV-2, point mutation (K417N) and deletion (69/70DEL), successfully distinguishing wild-type, Omicron BA.1, and Omicron BA.2 SARS-CoV-2 strains from clinical nasopharyngeal/nasal swab samples. Additionally, we introduced a portable digital real-time sensing device to streamline SMART-dCRISPR and enhance its practicality for point-of-care settings. The combination of a rapid and sensitive isothermal CRISPR-based assay with single-molecule kinetic analysis in a portable format significantly enhances the versatility of CRISPR-based nucleic acid biosensing and genotyping.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Sistemas CRISPR-Cas , SARS-CoV-2 , Sistemas CRISPR-Cas/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Técnicas Biosensibles/métodos , Cinética , Humanos , COVID-19/virología , COVID-19/diagnóstico , Mutación , Técnicas de Genotipaje/métodos , Genotipo
16.
Animals (Basel) ; 14(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38929441

RESUMEN

Lead (Pb) is a major source of heavy metal contamination, and poses a threat to biodiversity and human health. Elevated levels of Pb can hinder insect growth and development, leading to apoptosis via mechanisms like oxidative damage. The midgut of silkworms is the main organ exposed to heavy metals. As an economically important lepidopteran model insect in China, heavy metal-induced stress on silkworms causes considerable losses in sericulture, thereby causing substantial economic damage. This study aimed to investigate Pb-induced detoxification-related genes in the midgut of silkworms using high-throughput sequencing methods to achieve a deeper comprehension of the genes' reactions to lead exposure. This study identified 11,567 unigenes and 14,978 transcripts. A total of 1265 differentially expressed genes (DEGs) were screened, comprising 907 upregulated and 358 downregulated genes. Subsequently, Gene Ontology (GO) classification analysis revealed that the 1265 DEGs were distributed across biological processes, cellular components, and molecular functions. This suggests that the silkworm midgut may affect various organelle functions and biological processes, providing crucial clues for further exploration of DEG function. Additionally, the expression levels of 12 selected detoxification-related DEGs were validated using qRT-PCR, which confirmed the reliability of the RNA-seq results. This study not only provides new insights into the detoxification defense mechanisms of silkworms after Pb exposure, but also establishes a valuable foundation for further investigation into the molecular detoxification mechanisms in silkworms.

17.
J Ethnopharmacol ; 333: 118498, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944357

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lindera aggregata (Sims) Kosterm is a common traditional herb that has multiple bioactivities. Radix Linderae (LR), the dry roots of Lindera aggregata (Sims) Kosterm, is a traditional Chinese herbal medicine with antioxidant, anti-inflammatory and immunomodulatory properties, first found in Kaibao Era. Norboldine (Nor) is an alkaloid extracted from LR and is one of the primary active ingredients of LR. However, the pharmacological functions and mechanism of Nor in Alzheimer's disease (AD) are still unknown. AIM OF THE STUDY: This study aims to investigate the effect and mechanism of Nor therapy in improving the cognitive impairment and pathological features of 3 × Tg mice. MATERIALS AND METHODS: 3 × Tg mice were treated with two concentrations of Nor for one month and then the memory and cognitive abilities of mice were assessed by novel object recognition experiment and Morris water maze. The impact of Nor on the pathology of ADwere examined in PC12 cells and animal tissues using western blotting and immunofluorescence. Finally, western blotting was used to verify the anti-apoptotic effect of Nor by activating AMPK/GSK3ß/Nrf2 signaling pathway at animal and cellular levels. RESULTS: In this study, we showed that Nor treatment improved the capacity of the learning and memory of 3 × Tg mice and alleviated AD pathology such as Aß deposition. In addition, Nor restored the abnormalities of mitochondrial membrane potential, significantly reduced the production of intracellular ROS and neuronal cell apoptosis. Mechanistically, we combined network pharmacology and experimental verification to show that Nor may exert antioxidant stress and anti-apoptotic through the AMPK/GSK3ß/Nrf2 signaling pathway. CONCLUSION: Our data provide some evidence that Nor exerts a neuroprotective effect through the AMPK/GSK3ß/Nrf2 pathway, thereby improving cognitive impairment in AD model mice. Natural products derived from traditional Chinese medicines are becoming increasingly popular in the process of new drug development and discovery, and our findings provide new perspectives for the discovery of improved treatment strategies for AD.


Asunto(s)
Alcaloides , Enfermedad de Alzheimer , Disfunción Cognitiva , Lindera , Extractos Vegetales , Transducción de Señal , Animales , Masculino , Ratones , Ratas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Transgénicos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Células PC12 , Transducción de Señal/efectos de los fármacos , Lindera/química , Extractos Vegetales/administración & dosificación , Alcaloides/administración & dosificación
18.
J Hazard Mater ; 472: 134438, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718504

RESUMEN

Construction of an efficient bio-reductive dechlorination system remains challenging due to the narrow ecological niche and low-growth rate of organohalide-respiring bacteria during field remediation. In this study, a biochar-based organohalide-respiring bacterial agent was obtained, and its performance and effects on indigenous microbial composition, diversity, and inter-relationship in soil were investigated. A well-performing material, Triton X-100 modified biochar (BC600-TX100), was found to have the superior average pore size, specific surface area and hydrophicity, compared to other materials. Interestingly, Pseudomonas aeruginosa CP-1, which is capable of 2,4,6-TCP dechlorination, showed a 348 times higher colonization cell number on BC600-TX100 than that of BC600 after 7 d. Meanwhile, the dechlorination rate in soil showed the highest (0.732 d-1) in the BC600-TX100 bacterial agent than in the other agents. The long-term performance of the BC600-TX100 OHRB agent was also verified, with a stable dechlorination activity over six cycles. Soil microbial community analysis found the addition of the BC600-TX100 OHRB agent significantly increased the relative abundance of genus Pseudomonas from 1.53 % to 11.2 %, and Pseudomonas formed a close interaction relationship with indigenous microorganisms, creating a micro-ecological environment conducive to reductive dechlorination. This study provides a feasible bacterial agent for the in-situ bioremediation of soil contaminated organohalides. ENVIRONMENTAL IMPLICATION: Halogenated organic compounds are a type of toxic, refractory, and bio-accumulative persistent compounds widely existed in environment, widely detected in the air, water, and soil. In this study, we provide a feasible bacterial agent for the in-situ bioremediation of soil contaminated halogenated organic compounds. The application of biochar provides new insights for "Turning waste into treasure", which meets with the concept of green chemistry.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Clorofenoles , Microbiología del Suelo , Contaminantes del Suelo , Carbón Orgánico/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/química , Clorofenoles/metabolismo , Clorofenoles/química , Halogenación , Pseudomonas aeruginosa/metabolismo , Bacterias/metabolismo
19.
World Neurosurg ; 188: e177-e193, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763458

RESUMEN

OBJECTIVE: Gliomas are associated with high rates of disability and mortality, and currently, there is a lack of specific and sensitive biomarkers for diagnosis. The ideal biomarkers should be detected early through noninvasive methods. Our research aims to develop a rapid, convenient, noninvasive diagnostic method for gliomas, as well as for grading and differentiation. METHOD: We retrospectively collected data from patients who underwent surgery for glioma, trigeminal neuralgia/hemifacial spasmschwannoma, and those diagnosed with multiple sclerosis at our institution from January 2018 to December 2020. Inflammatory markers and coagulation factor levels were collected on admission, and neutrophil count (NLR), (WBC count minus neutrophil count) / lymphocyte count, platelet count / lymphocyte count, lymphocyte count / monocyte count, and albumin count [g/L] + total lymphocyte count × 5 were calculated for patients. Analyze the significance of biomarkers in the diagnosis and grading of gliomas, the diagnosis of MS, and the differential diagnosis of them. RESULTS: We evaluated 155 healthy individuals, 64 trigeminal neuralgia/hemifacial spasm patients, 47 MS patients, 316 schwannoma patients, and 814 with glioma patients. Compared with healthy controls and MS group, the preoperative levels of NLR, (WBC count minus neutrophil count) / lymphocyte count, D-dimer, Fibrinogen, Antithrobin, and Factor VIII of glioma patients were significantly higher in glioma patients and positively correlated with the grade of glioma. Conversely, 0020 lymphocyte count / Monocyte count and albumin count [g/L] + total lymphocyte count × 5 were significantly lower and negatively correlated with glioma grading. ROC curves confirmed that for the diagnosis of glioma, NLR showed a maximum area under the curve value of 0.8616 (0.8322-0.8910), followed by D-dimer and Antithrombin, with area under the curve values of 0.8205 (0.7601-0.8809) and 0.8455 (0.8153-0.8758), respectively. NLR and d-dimer also showed great sensitivity in the diagnosis of MS and differential diagnosis with gliomas. CONCLUSIONS: Our study demonstrated that multiple inflammatory markers and coagulation factors could be utilized as biomarkers for the glioma diagnosis, grading, and differential diagnosis of MS. Furthermore, the combination of these markers exhibited high sensitivity and specificity.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/sangre , Glioma/cirugía , Glioma/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/cirugía , Biomarcadores/sangre , Factores de Coagulación Sanguínea/análisis , Anciano , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Diagnóstico Diferencial , Neutrófilos , Biomarcadores de Tumor/sangre , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico , Recuento de Leucocitos
20.
J Anal Methods Chem ; 2024: 9811466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742189

RESUMEN

SIPI6398 is a novel anti-schizophrenia agent with a new mechanism of action and demonstrates better target selectivity and safety compared to its competitors. However, few in vivo studies on the pharmacokinetics and bioavailability of SIPI6398 have been performed. A rapid and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach was developed for accurate quantification of SIPI6398 in rat plasma. A simple protein precipitation of acetonitrile-methanol (9 : 1, v/v) was used to treat plasma. Chromatography was performed on a UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 µm) at a flow rate of 0.4 ml/min. The mobile phase consisted of acetonitrile-water (with 0.1% formic acid) and gradient elution was used, and the elution time was 4 minutes. Quantitative analysis was performed using electrospray ionization (ESI) in positive ion detection mode with multiple reaction monitoring (MRM) mode. To evaluate the pharmacokinetics and bioavailability, SIPI6398 was administered to rats in two different ways: oral (4 mg/kg) and intravenous (2 mg/kg) administration. The calibration curve for the UPLC-MS/MS approach shows excellent linearity in the range of 1-2000 ng/mL with an r value above 0.99. The precision, accuracy, recovery, matrix effect, and stability results all meet the criteria established for biological analytical methods. The UPLC-MS/MS method was successfully applied it to pharmacokinetics study of SIPI6398. The bioavailability of SIPI6398 was calculated to be 13.2%. These studies have the potential to contribute towards a more comprehensive comprehension of the pharmacokinetics and bioavailability of SIPI6398.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA