Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Signal Transduct Target Ther ; 9(1): 183, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972904

RESUMEN

Helicobacter pylori (H. pylori) is currently recognized as the primary carcinogenic pathogen associated with gastric tumorigenesis, and its high prevalence and resistance make it difficult to tackle. A graph neural network-based deep learning model, employing different training sets of 13,638 molecules for pre-training and fine-tuning, was aided in predicting and exploring novel molecules against H. pylori. A positively predicted novel berberine derivative 8 with 3,13-disubstituted alkene exhibited a potency against all tested drug-susceptible and resistant H. pylori strains with minimum inhibitory concentrations (MICs) of 0.25-0.5 µg/mL. Pharmacokinetic studies demonstrated an ideal gastric retention of 8, with the stomach concentration significantly higher than its MIC at 24 h post dose. Oral administration of 8 and omeprazole (OPZ) showed a comparable gastric bacterial reduction (2.2-log reduction) to the triple-therapy, namely OPZ + amoxicillin (AMX) + clarithromycin (CLA) without obvious disturbance on the intestinal flora. A combination of OPZ, AMX, CLA, and 8 could further decrease the bacteria load (2.8-log reduction). More importantly, the mono-therapy of 8 exhibited comparable eradication to both triple-therapy (OPZ + AMX + CLA) and quadruple-therapy (OPZ + AMX + CLA + bismuth citrate) groups. SecA and BamD, playing a major role in outer membrane protein (OMP) transport and assembling, were identified and verified as the direct targets of 8 by employing the chemoproteomics technique. In summary, by targeting the relatively conserved OMPs transport and assembling system, 8 has the potential to be developed as a novel anti-H. pylori candidate, especially for the eradication of drug-resistant strains.


Asunto(s)
Antibacterianos , Berberina , Aprendizaje Profundo , Helicobacter pylori , Helicobacter pylori/efectos de los fármacos , Berberina/farmacología , Berberina/química , Berberina/farmacocinética , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Animales , Omeprazol/farmacología , Claritromicina/farmacología , Amoxicilina/farmacología
2.
Eur J Med Chem ; 264: 115978, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061229

RESUMEN

The COVID-19 pandemic highlights the urgent need to develop effective small-molecule antivirals. Thirty-three novel biaryl amide derivatives were synthesized and evaluated for anti-coronaviral activity. Some significant SARs were uncovered and the intensive structure modifications led to the most active compounds 8b and 8h. The broad-spectrum anti-coronaviral effects of 8h were validated at RNA and protein levels. 8h inhibits coronavirus replication at multiple stages, from virus entry to virus dsRNA synthesis. The mechanism of action showed that 8h may simultaneously act on 3CLpro and TMPRSS2 to display anti-coronaviral effects. 8h combined with RdRp inhibitor showed synergistic inhibitory activity against coronavirus. This study confirmed that biaryl amide derivatives may be a new class of potential therapeutic agents against coronavirus with multiple target effect, worthy of further investigation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Amidas/farmacología , Pandemias , Antivirales/química , Inhibidores de Proteasas/farmacología
3.
Front Pharmacol ; 14: 1251731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954857

RESUMEN

Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) infection, currently lacks specific preventive and therapeutic interventions. Here, we demonstrated that Pien Tze Huang (PZH) could dose-dependently inhibit EV-A71 replication at the cellular level, resulting in significant reductions in EV-A71 virus protein 1 (VP1) expression and viral yields in Vero and human rhabdomyosarcoma cells. More importantly, we confirmed that PZH could protect mice from EV-A71 infection for the first time, with Ribavirin serving as a positive control. PZH treatment reduced EV-A71 VP1 protein expression, viral yields in infected muscles, and improved muscle pathology. Additionally, we conducted a preliminary mechanism study using quantitative proteomics. The results suggested that the suppression of the PI3K/AKT/mTOR and NF-κB signaling pathways may contribute to the anti-EV-A71 activity of PZH. These findings provide strong evidence supporting the potential therapeutic application of PZH for EV-A71 infection management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA