RESUMEN
It is well established that forest type can have a profound impact on soil physicochemical properties but the associated changes in soil microbial communities and the mechanisms by which soil quality is improved by various plantations are not fully understood. In this study, soil physicochemical properties and microbial and enzyme activities were investigated in four forest types-Castanopsis hystrix pure forests (CHPF), C. hystrix-Pinus elliottii mixed forests (CHPEF), C. hystrix-Michelia macclurei mixed forests (CHMMF), and C. hystrix-Mytilaria laosensis mixed forests (CHMLF) in the subtropical region of China. The purpose of this study was to assess the effects of afforestation types on characteristics of soil-its physical, chemical, and biological properties. The results showed that the contents of soil total organic carbon (TOC), soil total nitrogen (TN), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) were significantly improved in both CHMMF and CHMLF mixed forest stands when compared to the CHPF pure stand. Soil enzyme activities were enhanced in the mixed forests. In particular, high phosphatase activity was observed in CHMLF stands, leading to the transformation of soil phosphorus to available phosphorus in this forest type. Our study demonstrated that the broad-leaved mixed forests, but not coniferous mixed forests, could significantly improve soil quality in the study region. Our research provides a scientific insight into the promotion of vegetation restoration and plantation forest management in plantation regions of subtropical areas.
RESUMEN
Keteleeria fortunei var. cyclolepis is an ideal tree species for mountain afforestation, timber forests, and landscaping. Its pollination process can be affected by the rainy season, making it difficult to pollinate the massive female cones, which leads to a high abortion rate and low quality of seeds. Here, we observed the pollen morphology of K. f. cyclolepis using scanning electron and light microscopes, investigated the characteristics of its in vitro germination by the detached method, and explored the effect of different storage temperatures and times on the pollen germination rate and the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Our results indicated that the pollen of K. f. cyclolepis is a five-cell pollen, comprising one noumenon and two air sacs, both of which were oval in polar view. The optimal condition for pollen germination of K. f. cyclolepis was 240 g/L sucrose + 70 mg/L CaCl2 + 210 mg/L H3BO3 at 24 °C and pH 6.0, resulting in a germination rate of 45.0%. The effects of different storage temperature and time on pollen germination rate varied significantly. The best storage temperature was - 80 °C, at which the germination rate was 20.9% after 365 days of storage, and the activity of three protective enzymes remained relatively high, representing relatively strong antioxidation and antiaging activity. Stepwise regression analysis showed that SOD was the main factor affecting the pollen germination rate of K. f. cyclolepis. The function of the three protective enzymes differed under various temperatures, for example, SOD served as a sensitive protective enzyme at room temperature, - 20 °C and - 80 °C, whereas both SOD and CAT served as sensitive protective enzymes at 4 °C.