Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202412077, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109496

RESUMEN

Sub-nanoclusters with ultra-small particle sizes are particularly significant to create advanced energy storage materials. Herein, Sn sub-nanoclusters encapsulated in nitrogen-doped multichannel carbon matrix (denoted as Sn-SCs@MCNF) are designed by a facile and controllable route as flexible anode for high-performance potassium ion batteries (PIBs). The uniformly dispersed Sn sub-nanoclusters in multichannel carbon matrix can be precisely identified, which ensure us to clarify the size influence on the electrochemical performance. The sub-nanoscale effect of Sn-SCs@MCNF restrains electrode pulverization and enhances the K+ diffusion kinetics, leading to the superior cycling stability and rate performance. As freestanding anode in PIBs, Sn-SCs@MCNF manifests superior K+ storage properties, such as exceptional cycling stability (331 mAh g-1 after 150 cycles at 100 mA g-1) and rate capability. Especially, the Sn-SCs@MCNF||KFe[Fe(CN)6] full cell demonstrates impressive reversible capacity of 167 mAh g-1 at 0.4 A g-1 even after 200 cycles. Theoretical calculations clarify that the ultrafine Sn sub-nanoclusters are beneficial for electron transfer and contribute to the lower energy barriers of the intermediates, thereby resulting in promising electrochemical performance. Comprehensive investigation for the intrinsic K+ storage process of Sn-SCs@MCNF is revealed by in situ analysis. This work provides vital guidance to design sub-nanoscale functional materials for high-performance energy-storage devices.

2.
J Am Chem Soc ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109994

RESUMEN

The poor durability of Ru-based catalysts limits the practical application in proton exchange membrane water electrolysis (PEMWE). Here, we report that the asymmetric active units in Ru1-xMxO2 (M = Sb, In, and Sn) binary solid solution oxides are constructed by introducing acid-resistant p-block metal sites, breaking the activity and stability limitations of RuO2 in acidic oxygen evolution reaction (OER). Constructing highly asymmetric Ru-O-Sb units with a strong electron delocalization effect significantly shortens the spatial distance between Ru and Sb sites, improving the bonding strength of the overall structure. The unique two-electron redox couples at Sb sites in asymmetric active units trigger additional chemical steps at different OER stages, facilitating continuous proton transfer. The optimized Ru0.8Sb0.2O2 solid solution requires a superlow overpotential of 160 mV at 10 mA cm-2 and a record-breaking stability of 1100 h in an acidic electrolyte. Notably, the scale-prepared Ru0.8Sb0.2O2 achieves efficient PEMWE performance under industrial conditions. General mechanism analysis shows that the enhanced proton transport in the asymmetric Ru-O-M unit provides a new working pathway for acidic OER, breaking the scaling relationship without sacrificing stability.

3.
Healthcare (Basel) ; 12(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998856

RESUMEN

The present review was aimed to describe the prevalence and the regional distribution of malocclusion among preschool children worldwide. Two independent reviewers performed a systematic literature search to identify English publications from January 2010 to May 2024 using PubMed, ISI Web of Science and Embase. Search MeSH key words were "malocclusion", "primary dentition" and "child, preschool". The reporting quality was assessed by the modified Newcastle-Ottawa Quality Assessment Scale. We identified 2599 publications and recruited 47 articles. Fourteen of the included studies were conducted in Asia, four in Europe, twenty-eight in South America and one in Africa. The prevalence of malocclusion ranged from 28.4% to 83.9%, and half of the reported prevalences were higher than 50%. The highest percentage was in Asia (61.81%), followed by Europe (61.50%), South America (52.69%) and Africa (32.50%). Statistically significant differences existed in deep overbite, anterior open bite, posterior crossbite, edge-to-edge incisor relationship and distal step between continents (p < 0.05). Europe showed the highest prevalence (33.08%) of deep overbite. Africa showed the highest prevalence (18.60%) of anterior open bite. Europe showed the highest prevalence (15.38%) of posterior crossbite. The most common malocclusion traits were increased overjet and deep overbite. To conclude, malocclusion remained prevalent in the primary dentition and varied between countries.

4.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847362

RESUMEN

Prussian blue analogue (PBA)/metal-organic frameworks (MOFs) are multifunctional precursors for the synthesis of metal/metal compounds, carbon, and their derived composites (P/MDCs) in chemical, medical, energy, and other applications. P/MDCs combine the advantages of both the high specific surface area of PBA/MOF and the electronic conductivity of metal compound/carbon. Although the calcination under different atmospheres has been extensively studied, the transformation mechanism of PBA/MOF under hydrothermal conditions remains unclear. The qualitative preparation of P/MDCs in hydrothermal conditions remains a challenge. Here, we select PBA to construct a machine-learning model and measure its hydrothermal phase diagram. The architecture-activity relationship of substances among nine parameters was analyzed for the hydrothermal phase transformation of PBA. Excitingly, we established a universal qualitative model to accurately fabricate 31 PBA derivates. Additionally, we performed three-dimensional reconstructed transmission electron microscopy, X-ray absorption fine structure spectroscopy, ultraviolet photoelectron spectroscopy, in situ X-ray powder diffraction, and theoretical calculation to analyze the advantages of hydrothermal derivatives in the oxygen evolution reaction and clarify their reaction mechanisms. We uncover the unified principles of the hydrothermal phase transformation of PBA, and we expect to guide the design for a wide range of composites.

5.
Adv Mater ; 36(32): e2405763, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38809945

RESUMEN

Demetalation caused by the electrochemical dissolution of metallic Fe atoms is a major challenge for the practical application of Fe─N─C catalysts. Herein, an efficient single metallic Mn active site is constructed to improve the strength of the Fe─N bond, inhibiting the demetalation effect of Fe─N─C. Mn acts as an electron donor inducing more delocalized electrons to reduce the oxidation state of Fe by increasing the electron density, thereby enhancing the Fe─N bond and inhibiting the electrochemical dissolution of Fe. The oxygen reduction reaction pathway for the dissociation of Fe─Mn dual sites can overcome the high energy barriers to direct O─O bond dissociation and modulate the electronic states of Fe─N4 sites. The resulting FeMn─N─C exhibits excellent ORR activity with a high half-wave potential of 0.92 V in alkaline electrolytes. FeMn─N─C as a cathode catalyst for Zn-air batteries has a cycle stability of 700 h at 25 °C and a long cycle stability of more than 210 h under extremely cold conditions at -40 °C. These findings contribute to the development of efficient and stable metal-nitrogen-carbon catalysts for various energy devices.

6.
Small ; : e2401713, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693076

RESUMEN

Aqueous zinc-based energy storage devices possess superior safety, cost-effectiveness, and high energy density; however, dendritic growth and side reactions on the zinc electrode curtail their widespread applications. In this study, these issues are mitigated by introducing a polyimide (PI) nanofabric interfacial layer onto the zinc substrate. Simulations reveal that the PI nanofabric promotes a pre-desolvation process, effectively desolvating hydrated zinc ions from Zn(H2O)6 2+ to Zn(H2O)4 2+ before approaching the zinc surface. The exposed zinc ion in Zn(H2O)4 2+ provides an accelerated charge transfer process and reduces the activation energy for zinc deposition from 40 to 21 kJ mol-1. The PI nanofabric also acts as a protective barrier, reducing side reactions at the electrode. As a result, the PI-Zn symmetric cell exhibits remarkable cycling stability over 1200 h, maintaining a dendrite-free morphology and minimal byproduct formation. Moreover, the cell exhibits high stability and low voltage hysteresis even under high current densities (20 mA cm-2, 10 mAh cm-2) thanks to the 3D porous structure of PI nanofabric. When integrated into full cells, the PI-Zn||AC hybrid zinc-ion capacitor and PI-Zn||MnVOH@SWCNT zinc-ion battery achieve impressive lifespans of 15000 and 600 cycles with outstanding capacitance retention. This approach paves a novel avenue for high-performance zinc metal electrodes.

7.
J Colloid Interface Sci ; 669: 117-125, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38705111

RESUMEN

Lithium cobalt phosphate (LiCoPO4) has great potential to be developed as a cathode material for lithium-ion batteries (LIBs) due to its structural stability and higher voltage platform with a high theoretical energy density. However, the relatively low diffusion of lithium ions still needs to be improved. In this work, Fe and Zn co-doped LiCoPO4: LiCo0.9-xFe0.1ZnxPO4/C is utilized to enhance the battery performance of LiCoPO4. The electrochemical properties of LiCo0.85Fe0.1Zn0.05PO4/C demonstrated an initial capacity of 118 mAh/g, with 93.4 % capacity retention at 1C after 100 cycles, and a good capacity of 87 mAh/g remained under a high current density of 10C. In addition, the diffusion rate of Li ions was investigated, proving the improvement of the materials with doping. The impedance results also showed a smaller resistance of the doped materials. Furthermore, operando X-ray diffraction displayed a good reversibility of the structural transformation, corresponding to cycling stability. This work provided studies of both the electrochemical properties and structural transformation of Fe and Zn co-doped LiCoPO4, which showed that 10 % Fe and 5 % Zn co-doping enhanced the electrochemical performance of LiCoPO4 as a cathode material in LIBs.

8.
Vaccines (Basel) ; 12(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675799

RESUMEN

Most available neutralizing antibodies are ineffective against highly mutated SARS-CoV-2 Omicron subvariants. Therefore, it is crucial to develop potent and broad-spectrum alternatives to effectively manage Omicron subvariants. Here, we constructed a high-diversity nanobody phage display library and identified nine nanobodies specific to the SARS-CoV-2 receptor-binding domain (RBD). Five of them exhibited cross-neutralization activity against the SARS-CoV-2 wild-type (WT) strain and the Omicron subvariants BA.1 and BA.4/5, and one nanobody demonstrated marked efficacy even against the Omicron subvariants BQ.1.1 and XBB.1. To enhance the therapeutic potential, we engineered a panel of multivalent nanobodies with increased neutralizing potency and breadth. The most potent multivalent nanobody, B13-B13-B13, cross-neutralized all tested pseudoviruses, with a geometric mean of the 50% inhibitory concentration (GM IC50) value of 20.83 ng/mL. An analysis of the mechanism underlying the enhancement of neutralization breadth by representative multivalent nanobodies demonstrated that the strategic engineering approach of combining two or three nanobodies into a multivalent molecule could improve the affinity between a single nanobody and spike, and could enhance tolerance toward escape mutations such as R346T and N460K. Our engineered multivalent nanobodies may be promising drug candidates for treating and preventing infection with Omicron subvariants and even future variants.

9.
Nat Commun ; 15(1): 2728, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553434

RESUMEN

Establishing appropriate metal-support interactions is imperative for acquiring efficient and corrosion-resistant catalysts for water splitting. Herein, the interaction mechanism between Ru nanoparticles and a series of titanium oxides, including TiO, Ti4O7 and TiO2, designed via facile non-stoichiometric engineering is systematically studied. Ti4O7, with the unique band structure, high conductivity and chemical stability, endows with ingenious metal-support interaction through interfacial Ti-O-Ru units, which stabilizes Ru species during OER and triggers hydrogen spillover to accelerate HER kinetics. As expected, Ru/Ti4O7 displays ultralow overpotentials of 8 mV and 150 mV for HER and OER with a long operation of 500 h at 10 mA cm-2 in acidic media, which is expanded in pH-universal environments. Benefitting from the excellent bifunctional performance, the proton exchange membrane and anion exchange membrane electrolyzer assembled with Ru/Ti4O7 achieves superior performance and robust operation. The work paves the way for efficient energy conversion devices.

10.
Stem Cell Reports ; 19(3): 399-413, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38428414

RESUMEN

Degenerative bone disorders have a significant impact on global health, and regeneration of articular cartilage remains a challenge. Existing cell therapies using mesenchymal stromal cells (MSCs) have shown limited efficacy, highlighting the necessity for alternative stem cell sources. Here, we have identified and characterized MSX1+ mesenchymal progenitor cells in the developing limb bud with remarkable osteochondral-regenerative and microenvironment-adaptive capabilities. Single-cell sequencing further revealed the presence of two major cell compositions within the MSX1+ cells, where a distinct PDGFRAlow subset retained the strongest osteochondral competency and could efficiently regenerate articular cartilage in vivo. Furthermore, a strategy was developed to generate MSX1+PDGFRAlow limb mesenchyme-like (LML) cells from human pluripotent stem cells that closely resembled their mouse counterparts, which were bipotential in vitro and could directly regenerate damaged cartilage in a mouse injury model. Together, our results indicated that MSX1+PDGFRAlow LML cells might be a prominent stem cell source for human cartilage regeneration.


Asunto(s)
Cartílago Articular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Células Madre , Tratamiento Basado en Trasplante de Células y Tejidos , Mesodermo , Trasplante de Células Madre Mesenquimatosas/métodos , Diferenciación Celular , Factor de Transcripción MSX1/genética
11.
Nat Commun ; 15(1): 2778, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555361

RESUMEN

Bacterial genotoxins damage host cells by targeting their chromosomal DNA. In the present study, we demonstrate that a genotoxin of Salmonella Typhi, typhoid toxin, triggers the senescence-associated secretory phenotype (SASP) by damaging mitochondrial DNA. The actions of typhoid toxin disrupt mitochondrial DNA integrity, leading to mitochondrial dysfunction and disturbance of redox homeostasis. Consequently, it facilitates the release of damaged mitochondrial DNA into the cytosol, activating type I interferon via the cGAS-STING pathway. We also reveal that the GCN2-mediated integrated stress response plays a role in the upregulation of inflammatory components depending on the STING signaling axis. These SASP factors can propagate the senescence effect on T cells, leading to senescence in these cells. These findings provide insights into how a bacterial genotoxin targets mitochondria to trigger a proinflammatory SASP, highlighting a potential therapeutic target for an anti-toxin intervention.


Asunto(s)
Fenotipo Secretor Asociado a la Senescencia , Fiebre Tifoidea , Humanos , Fiebre Tifoidea/metabolismo , Mutágenos/metabolismo , Senescencia Celular/fisiología , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , Salmonella , Fenotipo
12.
Angew Chem Int Ed Engl ; 63(18): e202402018, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38390636

RESUMEN

Developing ruthenium-based heterogeneous catalysts with an efficient and stable interface is essential for enhanced acidic oxygen evolution reaction (OER). Herein, we report a defect-rich ultrathin boron nitride nanosheet support with relatively independent electron donor and acceptor sites, which serves as an electron reservoir and receiving station for RuO2, realizing the rapid supply and reception of electrons. Through precisely controlling the reaction interface, a low OER overpotential of only 180 mV (at 10 mA cm-2) and long-term operational stability (350 h) are achieved, suggesting potential practical applications. In situ characterization and theoretical calculations have validated the existence of a localized electronic recycling between RuO2 and ultrathin BN nanosheets (BNNS). The electron-rich Ru sites accelerate the adsorption of water molecules and the dissociation of intermediates, while the interconnection between the O-terminal and B-terminal edge establishes electronic back-donation, effectively suppressing the over-oxidation of lattice oxygen. This study provides a new perspective for constructing a stable and highly active catalytic interface.

13.
Adv Mater ; 36(7): e2308925, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37879753

RESUMEN

Neutral oxygen evolution reaction (OER) with unique reactive environments exhibits extremely slow reaction kinetics, posing significant challenges in the design of catalysts. Herein, a built-in electric field between the tungstate (Ni-FeWO4 ) with adjustable work function and Lewis acid WO3 is elaborately constructed to regulate asymmetric interfacial electron distribution, which promotes electron accumulation of Fe sites in the tungstate. This decelerates the rapid dissolution of Fe under the OER potentials, thereby retaining the active hydroxyl oxide with the optimized OER reaction pathway. Meanwhile, Lewis acid WO3 enhances hydroxyl adsorption near the electrode surface to improve mass transfer. As expected, the optimized Ni-FeWO4 @WO3 /NF self-supporting electrode achieves a low overpotential of 235 mV at 10 mA cm-2 in neutral media and maintains stable operation for 200 h. Furthermore, the membrane electrode assembly constructed by such self-supporting electrode exhibits robust stability for 250 h during neutral seawater electrolysis. This work deepens the understanding of the reconstruction of OER catalysts in neutral environments and paves the way for development of the energy conversion technologies.

14.
Angew Chem Int Ed Engl ; 63(7): e202317220, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38153674

RESUMEN

Modulating the microenvironment of single-atom catalysts (SACs) is critical to optimizing catalytic activity. Herein, we innovatively propose a strategy to improve the local reaction environment of Ru single atoms by precisely switching the crystallinity of the support from high crystalline and low crystalline, which significantly improves the hydrogen evolution reaction (HER) activity. The Ru single-atom catalyst anchored on low-crystalline nickel hydroxide (Ru-LC-Ni(OH)2 ) reconstructs the distribution balance of the interfacial ions due to the activation effect of metal dangling bonds on the support. Single-site Ru with a low oxidation state induces the aggregation of hydronium ions (H3 O+ ), leading to the formation of a local acidic microenvironment in alkaline media, breaking the pH-dependent HER activity. As a comparison, the Ru single-atom catalyst anchored on high-crystalline nickel hydroxide (Ru-HC-Ni(OH)2 ) exhibits a sluggish Volmer step and a conventional local reaction environment. As expected, Ru-LC-Ni(OH)2 requires low overpotentials of 9 and 136 mV at 10 and 1000 mA cm-2 in alkaline conditions and operates stably at 500 mA cm-2 for 500 h in an alkaline seawater anion exchange membrane (AEM) electrolyzer. This study provides a new perspective for constructing highly active single-atom electrocatalysts.

15.
J Am Chem Soc ; 145(43): 23659-23669, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871168

RESUMEN

Designing stable single-atom electrocatalysts with lower energy barriers is urgent for the acidic oxygen evolution reaction. In particular, the atomic catalysts are highly dependent on the kinetically sluggish acid-base mechanism, limiting the reaction paths of intermediates. Herein, we successfully manipulate the steric localization of Ru single atoms at the Co3O4 surface to improve acidic oxygen evolution by precise control of the anchor sites. The delicate structure design can switch the reaction mechanism from the lattice oxygen mechanism (LOM) to the optimized adsorbate evolution mechanism (AEM). In particular, Ru atoms embedded into cation vacancies reveal an optimized mechanism that activates the proton donor-acceptor function (PDAM), demonstrating a new single-atom catalytic pathway to circumvent the classic scaling relationship. Steric interactions with intermediates at the anchored Ru-O-Co interface played a primary role in optimizing the intermediates' conformation and reducing the energy barrier. As a comparison, Ru atoms confined to the surface sites exhibit a lattice oxygen mechanism for the oxygen evolution process. As a result, the delicate atom control of the spatial position presents a 100-fold increase in mass activity from 36.96 A gRu(ads)-1 to 4012.11 A gRu(anc)-1 at 1.50 V. These findings offer new insights into the precise control of single-atom catalytic behavior.

16.
Adv Mater ; 35(48): e2305939, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37671910

RESUMEN

The continuous oxidation and leachability of active sites in Ru-based catalysts hinder practical application in proton-exchange membrane water electrolyzers (PEMWE). Herein, robust inter-doped tungsten-ruthenium oxide heterostructures [(Ru-W)Ox ] fabricated by sequential rapid oxidation and metal thermomigration processes are proposed to enhance the activity and stability of acidic oxygen evolution reaction (OER). The introduction of high-valent W species induces the valence oscillation of the Ru sites during OER, facilitating the cyclic transition of the active metal oxidation states and maintaining the continuous operation of the active sites. The preferential oxidation of W species and electronic gain of Ru sites in the inter-doped heterostructure significantly stabilize RuOx on WOx substrates beyond the Pourbaix stability limit of bare RuO2 . Furthermore, the asymmetric Ru-O-W active units are generated around the heterostructure interface to adsorb the oxygen intermediates synergistically, enhancing the intrinsic OER activity. Consequently, the inter-doped (Ru-W)Ox heterostructures not only demonstrate an overpotential of 170 mV at 10 mA cm-2 and excellent stability of 300 h in acidic electrolytes but also exhibit the potential for practical applications, as evidenced by the stable operation at 0.5 A cm-2 for 300 h in PEMWE.

17.
Angew Chem Int Ed Engl ; 62(42): e202311937, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37658707

RESUMEN

Designing novel single-atom catalysts (SACs) supports to modulate the electronic structure is crucial to optimize the catalytic activity, but rather challenging. Herein, a general strategy is proposed to utilize the metalloid properties of supports to trap and stabilize single-atoms with low-valence states. A series of single-atoms supported on the surface of tungsten carbide (M-WCx , M=Ru, Ir, Pd) are rationally developed through a facile pyrolysis method. Benefiting from the metalloid properties of WCx , the single-atoms exhibit weak coordination with surface W and C atoms, resulting in the formation of low-valence active centers similar to metals. The unique metal-metal interaction effectively stabilizes the low-valence single atoms on the WCx surface and improves the electronic orbital energy level distribution of the active sites. As expected, the representative Ru-WCx exhibits superior mass activities of 7.84 and 62.52 A mgRu -1 for the hydrogen oxidation and evolution reactions (HOR/HER), respectively. In-depth mechanistic analysis demonstrates that an ideal dual-sites cooperative mechanism achieves a suitable adsorption balance of Had and OHad , resulting in an energetically favorable Volmer step. This work offers new guidance for the precise construction of highly active SACs.

18.
Small ; 19(48): e2304200, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37525334

RESUMEN

Molybdenum selenium (MoSe2 ) has tremendous potential in potassium-ion batteries (PIBs) due to its large interlayer distance, favorable bandgap, and high theoretical specific capacity. However, the poor conductivity and large K+ insertion/extraction in MoSe2 inevitably leads to sluggish reaction kinetics and poor structural stability. Herein, Coinduced engineering is employed to illuminate high-conductivity electron pathway and mobile ion diffusion of MoSe2 nanosheets anchored on reduced graphene oxide substrate (Co-MoSe2 /rGO). Benefiting from the activated electronic conductivity and ion diffusion kinetics, and an expanded interlayer spacing resulting from Co doping, combined with the interface coupling with highly conductive reduced graphene oxide (rGO) substrate through Mo-C bonding, the Co-MoSe2 /rGO anode demonstrates remarkable reversible capacity, superior rate capability, and stable long-term cyclability for potassium storage, as well as superior energy density and high power density for potassium-ion capacitors. Systematic performance measurement, dynamic analysis, in-situ/ex-situ measurements, and density functional theory (DFT) calculations elucidate the performance-enhancing mechanism of Co-MoSe2 /rGO in view of the electronic and ionic transport kinetics. This work offers deep atomic insights into the fundamental factors of electrodes for potassium-ion batteries/capacitors with superior electrochemical performance.

19.
J Colloid Interface Sci ; 649: 203-213, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37348340

RESUMEN

Dual-carbon engineering combines the advantages of graphite and hard carbon, thereby optimizing the potassium storage performance of carbon materials. However, dual-carbon engineering faces challenges balancing specific capacity, capability, and stability. In this study, we present a coordination engineering of Zn-N4 moieties on dual-carbon through additional P doping, which effectively modulates the symmetric charge distribution around the Zn center. Experimental results and theoretical calculations unveil that additional P doping induces an optimized electronic structure of the Zn-N4 moieties, thus enhancing K+ adsorption. A single-atom Zn metal coordinated with nitrogen and phosphorus reduces the K+ diffusion barrier and improves fast K+ migration kinetics. Consequently, Zn-NPC@rGO exhibits high reversible specific capacities, excellent rate capability, and impressive cycling stability, and remarkable power and energy densities for potassium-ion capacitors (PICs). This study provides insights into crucial factors for enhancing potassium storage performance.

20.
Adv Mater ; 35(36): e2303109, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247611

RESUMEN

High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature-tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy-rich porous perovskite oxide (CaMnO3 ) nanofibers coated with reduced graphene oxide coating (V-CMO/rGO) are developed as the air electrode catalyst for low-temperature and knittable Zn-air batteries. V-CMO/rGO exhibits top-level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V-CMO/rGO drives knittable and flexible Zn-air batteries under a low temperature of -40 °C with high peak power density of 56 mW cm-2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA