Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Vet Res ; 55(1): 97, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095890

RESUMEN

Swine enteric coronaviruses (SeCoVs) pose a significant threat to the global pig industry, but no effective drugs are available for treatment. Previous research has demonstrated that thapsigargin (TG), an ER stress inducer, has broad-spectrum antiviral effects on human coronaviruses. In this study, we investigated the impact of TG on transmissible gastroenteritis virus (TGEV) infection using cell lines, porcine intestinal organoid models, and piglets. The results showed that TG effectively inhibited TGEV replication both in vitro and ex vivo. Furthermore, animal experiments demonstrated that oral administration of TG inhibited TGEV infection in neonatal piglets and relieved TGEV-associated tissue injury. Transcriptome analyses revealed that TG improved the expression of the ER-associated protein degradation (ERAD) component and influenced the biological processes related to secretion, nutrient responses, and epithelial cell differentiation in the intestinal epithelium. Collectively, these results suggest that TG is a potential novel oral antiviral drug for the clinical treatment of TGEV infection, even for infections caused by other SeCoVs.


Asunto(s)
Antivirales , Gastroenteritis Porcina Transmisible , Tapsigargina , Virus de la Gastroenteritis Transmisible , Animales , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Virus de la Gastroenteritis Transmisible/fisiología , Porcinos , Gastroenteritis Porcina Transmisible/tratamiento farmacológico , Gastroenteritis Porcina Transmisible/virología , Antivirales/farmacología , Tapsigargina/farmacología , Línea Celular , Replicación Viral/efectos de los fármacos
3.
J Cancer ; 15(14): 4577-4590, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006084

RESUMEN

Purpose: Early growth response 1 (EGR1) is a crucial transcription factor composed of zinc finger structures, inhibitory and activating regulatory regions. We identified the biological effect and molecular mechanisms of EGR1 in breast cancer (BC). Methods: We used qRT-PCR, western blot and immunohistochemistry to examine the expression of EGR1 in BC samples. CCK-8 and colony assay were performed to reveal the effect of EGR1 on the proliferation of BC cells. LDH release assay, MCB assay, MDA assay, C-AM assay and TMRE assay were performed to measure the levels of LDH release, GSH, MDA, LIP and mitochondrial membrane potential. The regulation of EGR1 on the expression of Nrf2 and HMOX1 was investigated through Western blot. Xenograft models were conducted to determine the impact of EGR1 overexpression on BC in vivo. Results: The expression of EGR1 was downregulated in BC tissues compared with the normal tissues, and lower expression of EGR1 associated with poorer clinical outcome in BC patients. Through in vitro experiments, we found that EGR1 downregulation facilitated the proliferation of BC cells, and overexpression of EGR1 inhibited the proliferation of BC cells. In addition, EGR1 knockdown alleviated erastin-induced ferroptosis and overexpression of EGR1 facilitated erastin-induced ferroptosis in BC cells. Moreover, overexpression of EGR1 facilitated the anti-tumor effect caused by erastin in vivo. Mechanistically, the phosphorylation levels of Nrf2 and the expression of HMOX1 were reduced due to the downregulation of EGR1, and increased due to the upregulation of EGR1. Additionally, the finding that EGR1 facilitated erastin-induced ferroptosis was alleviated by the inhibition of Nrf2-HMOX1. Conclusion: The expression of EGR1 is downregulated in BC, which is correlated with poor prognosis of BC patients. EGR1 suppresses the proliferation of BC cells and facilitates erastin-induced ferroptosis by activating Nrf2-HMOX1 signaling pathway in BC cells.

4.
Insects ; 15(7)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39057239

RESUMEN

Lymantria xylina Swinhoe (Lepidoptera: Erebidae) is a potentially invasive pest, similar to Lymantria dispar asiatica Vnukovskij and Lymantria dispar japonica Motschulsky (Lepidoptera: Erebidae). To evaluate its potential for spread and flight distance related to egg deposition on vessels at ports, we employed a flight mill to assess the flight capabilities of its adults under varying conditions. Our findings revealed that females primarily flew short distances and ceased flying after 3:00 AM, whereas males covered much longer distances throughout the day. Sex, age, and flight duration significantly influenced flight ability. Females exhibited weaker flight capability than males, and their ability declined with increasing age or flight duration. Notably, 1-day-old moths displayed the strongest flight ability, with average flight distances of up to 3.975 km for females and 8.441 km for males. By the fifth day, females no longer flew, and males experienced reduced flight ability. After continuous hanging for 16 h, females lost most of their flight capacity, while males remained capable of flight even after 32 h. Additionally, female flight ability decreased significantly after mating, possibly due to factors such as egg-carrying capacity, weight, and load ratio. This study provides a foundation for assessing the risk of long-distance dispersal of L. xylina via ocean-going freighters, considering female moths' phototactic flight and oviposition.

5.
Cancer Med ; 13(12): e7335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923311

RESUMEN

OBJECTIVES: HER2 is an infrequently mutated driver gene in non-small cell lung cancer (NSCLC). At present, there has been no comprehensive large-scale clinical study to establish the optimal first-line treatment strategy for advanced lung adenocarcinoma (LUAD) with HER2-Mutant. Besides that, the effectiveness and safety of pyrotinib, a pan-HER inhibitor, in the context of NSCLC are still undergoing investigation. MATERIALS AND METHODS: In this study, we conducted a retrospective data collection of HER2-Mutated advanced LUAD who received first-line treatment and pyrotinib between May 2014 and June 2023. Patients treated with chemotherapy, chemotherapy + immune checkpoint inhibitors (ICIs), chemotherapy + bevacizumab and pyrotinib in first-line treatment. Furthermore, we collected data on the efficacy and safety of pyrotinib in these patients after disease progression. The main endpoint of the study was progression-free survival (PFS). RESULTS: In the final analysis, 89 patients were included in the first-line cohort and 30 patients were included in the pyrotinib cohort. In the first-line treatment cohort, chemotherapy + ICIs, chemotherapy + bevacizumab, and pyrotinib exhibited notable survival benefits compared to chemotherapy (median PFS: 9.87 vs. 7.77 vs. 7.10 vs. 5.40 months, p-value < 0.05). Furthermore, patients with a first-line treatment PFS of less than 6 months may potentially benefit from subsequent treatment with pyrotinib (median PFS: 7.467 vs. 3.000, p-value = 0.0490). CONCLUSIONS: In the first-line treatment of HER2-Mutant LUAD, regimens involving combinations like chemotherapy + ICIs, chemotherapy + bevacizumab, and pyrotinib may confer enhanced survival advantages compared to chemotherapy. Nevertheless, no significant distinctions were observed among these three treatment strategies, underscoring the imperative to identify biomarkers for the discerning selection of suitable therapeutic modalities. Moreover, patients with suboptimal response to first-line treatment may potentially derive more benefit from pyrotinib.


Asunto(s)
Acrilamidas , Adenocarcinoma del Pulmón , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pulmonares , Mutación , Receptor ErbB-2 , Humanos , Femenino , Estudios Retrospectivos , Masculino , Persona de Mediana Edad , Anciano , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Acrilamidas/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/mortalidad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Supervivencia sin Progresión , Adulto , Aminoquinolinas/uso terapéutico , Aminoquinolinas/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Bevacizumab/uso terapéutico , Bevacizumab/administración & dosificación , Anciano de 80 o más Años
6.
Biol Proced Online ; 26(1): 12, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714954

RESUMEN

BACKGROUND: Lung adenocarcinoma metastasizing to the brain results in a notable increase in patient mortality. The high incidence and its impact on survival presents a critical unmet need to develop an improved understanding of its mechanisms. METHODS: To identify genes that drive brain metastasis of tumor cells, we collected cerebrospinal fluid samples and paired plasma samples from 114 lung adenocarcinoma patients with brain metastasis and performed 168 panel-targeted gene sequencing. We examined the biological behavior of PMS2 (PMS1 Homolog 2)-amplified lung cancer cell lines through wound healing assays and migration assays. In vivo imaging techniques are used to detect fluorescent signals that colonize the mouse brain. RNA sequencing was used to compare differentially expressed genes between PMS2 amplification and wild-type lung cancer cell lines. RESULTS: We discovered that PMS2 amplification was a plausible candidate driver of brain metastasis. Via in vivo and in vitro assays, we validated that PMS2 amplified PC-9 and LLC lung cancer cells had strong migration and invasion capabilities. The functional pathway of PMS2 amplification of lung cancer cells is mainly enriched in thiamine, butanoate, glutathione metabolism. CONCLUSION: Tumor cells elevated expression of PMS2 possess the capacity to augment the metastatic potential of lung cancer and establish colonies within the brain through metabolism pathways.

7.
J Cell Mol Med ; 28(10): e18399, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757920

RESUMEN

Ferroptosis is a distinct mode of cell death, distinguishing itself from typical apoptosis by its reliance on the accumulation of iron ions and lipid peroxides. Cells manifest an imbalance between oxidative stress and antioxidant equilibrium during certain pathological contexts, such as tumours, resulting in oxidative stress. Notably, recent investigations propose that heightened intracellular reactive oxygen species (ROS) due to oxidative stress can heighten cellular susceptibility to ferroptosis inducers or expedite the onset of ferroptosis. Consequently, comprehending role of ROS in the initiation of ferroptosis has significance in elucidating disorders related to oxidative stress. Moreover, an exhaustive exploration into the mechanism and control of ferroptosis might offer novel targets for addressing specific tumour types. Within this context, our review delves into recent fundamental pathways and the molecular foundation of ferroptosis. Four classical ferroptotic molecular pathways are well characterized, namely, glutathione peroxidase 4-centred molecular pathway, nuclear factor erythroid 2-related factor 2 molecular pathway, mitochondrial molecular pathway, and mTOR-dependent autophagy pathway. Furthermore, we seek to elucidate the regulatory contributions enacted by ROS. Additionally, we provide an overview of targeted medications targeting four molecular pathways implicated in ferroptosis and their potential clinical applications. Here, we review the role of ROS and oxidative stress in ferroptosis, and we discuss opportunities to use ferroptosis as a new strategy for cancer therapy and point out the current challenges persisting within the domain of ROS-regulated anticancer drug research and development.


Asunto(s)
Ferroptosis , Neoplasias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Ferroptosis/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Transducción de Señal , Autofagia , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Mitocondrias/metabolismo
8.
Dev Comp Immunol ; 156: 105166, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38521378

RESUMEN

C-type lectin proteins (CTLs), a group of pattern recognition receptors (PRRs), play pivotal roles in immune responses. However, the signal transduction and regulation of CTLs in cephalochordates have yet to be explored. In this study, we examined the composition of CTLs in Branchiostoma japonicum, identifying a total of 272 CTLs. These CTLs underwent further analysis concerning domain arrangement, tandem and segmental duplication events. A multidomain C-type lectin gene, designated as BjCTL5, encompassing CLECT, KR, CUB, MAM, and SR domains, was the focal point of our investigation. BjCTL5 exhibits ubiquitous expression across all detected tissues and is responsive to stimulation by LPS, mannose, and poly (I:C). The recombinant protein of BjCTL5 can bind to Escherichia coli and Staphylococcus aureus, inducing their agglutination and inhibiting the proliferation of S. aureus. Yeast two-hybrid, CoIP, and confocal immunofluorescence experiments revealed the interaction between BjCTL5 and apoptosis-stimulating proteins of p53, BjASPP. Intriguingly, BjCTL5 was observed to induce the luciferase activity of the NF-κB promoter in HEK293T cells. These results suggested a potential interaction between BjCTL5 and BjASPP, implicating that they involve in the activation of the NF-κB signaling pathway, which provides an evolutionary viewpoint on NF-κB signaling pathway in primitive chordate.


Asunto(s)
Anfioxos , Lectinas Tipo C , FN-kappa B , Transducción de Señal , Staphylococcus aureus , Animales , FN-kappa B/metabolismo , Anfioxos/genética , Anfioxos/inmunología , Anfioxos/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología , Humanos , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Unión Proteica , Células HEK293 , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/genética , Inmunidad Innata
9.
Heliyon ; 10(5): e26974, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463866

RESUMEN

Background: The utilization of immune checkpoint inhibitors (ICIs) has become the established protocol for treating advanced non-small cell lung cancer (NSCLC). This work aimed to identify the immune-related gene signature that can predict the prognosis of NSCLC patients receiving ICI treatment. Methods: The ImmPort database was queried to obtain a list of immune-related genes (IRGs). Differentially expressed IRGs in NSCLC patients were identified using the TCGA database. RNA-seq data and clinical information from NSCLC patients receiving immunotherapy were obtained from the GEO database (GSE93157 and ////). A gene signature was generated through multivariate Cox and LASSO regression analyses. The prognostic value and function of this gene signature were thoroughly investigated using comprehensive bioinformatics analyses. Results: A total of 6 prognostic-related genes were identified from 617 differentially expressed genes, and two prognostic-related differentially expressed genes (CAMP and IL17A) were determined to construct gene signature. Our gene signature demonstrated superior performance compared to other clinicopathological parameters in predicting the prognosis of NSCLC patients receiving immunotherapy, with an area under the ROC curve (AUC) of 0.812. Furthermore, immune infiltration analysis indicated that the high-risk group was enriched with resting CD4 T cell memory, while the low-risk group showed a "hot" tumor microenvironment that promotes anti-tumor immunity in NSCLC patients. Conclusion: Gene signatures based on immune-related genes exhibited excellent indicator performance of prognosis and immune infiltration, which has the potential to be an effective biomarker for NSCLC with ICI treatment.

10.
Sci Adv ; 10(10): eadm8597, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457504

RESUMEN

Efficient isolation and analysis of exosomal biomarkers hold transformative potential in biomedical applications. However, current methods are prone to contamination and require costly consumables, expensive equipment, and skilled personnel. Here, we introduce an innovative spaceship-like disc that allows Acoustic Separation and Concentration of Exosomes and Nucleotide Detection: ASCENDx. We created ASCENDx to use acoustically driven disc rotation on a spinning droplet to generate swift separation and concentration of exosomes from patient plasma samples. Integrated plasmonic nanostars on the ASCENDx disc enable label-free detection of enriched exosomes via surface-enhanced Raman scattering. Direct detection of circulating exosomal microRNA biomarkers from patient plasma samples by the ASCENDx platform facilitated a diagnostic assay for colorectal cancer with 95.8% sensitivity and 100% specificity. ASCENDx overcomes existing limitations in exosome-based molecular diagnostics and holds a powerful position for future biomedical research, precision medicine, and point-of-care medical diagnostics.


Asunto(s)
Exosomas , Nucleótidos , Humanos , Biomarcadores , Medicina de Precisión , Espectrometría Raman
11.
Cell Death Dis ; 15(3): 220, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493165

RESUMEN

Pancreatic cancer is one of the most malignant tumor types and is characterized by high metastasis ability and a low survival rate. As a chromatin-binding protein, HMGA2 is widely overexpressed and considered an oncogene with various undefined regulatory mechanisms. Herein, we demonstrated that HMGA2 is highly expressed in pancreatic cancer tissues, mainly distributed in epithelial cells, and represents a subtype of high epithelial-mesenchymal transition. Deletion of HMGA2 inhibits tumor malignancy through cell proliferation, metastasis, and xenograft tumor growth in vivo. Moreover, HMGA2 enhanced the cellular redox status by inhibiting reactive oxygen species and promoting glutathione production. Importantly, ferroptotic cell death was significantly ameliorated in cells overexpressing HMGA2. Conversely, HMGA2 deletion exacerbated ferroptosis. Mechanistically, HMGA2 activated GPX4 expression through transcriptional and translational regulation. HMGA2 binds and promotes cis-element modification in the promoter region of the GPX4 gene by enhancing enhancer activity through increased H3K4 methylation and H3K27 acetylation. Furthermore, HMGA2 stimulated GPX4 protein synthesis via the mTORC1-4EBP1 and -S6K signaling axes. The overexpression of HMGA2 alleviated the decrease in GPX4 protein levels resulting from the pharmacologic inhibition of mTORC1. Conversely, compared with the control, HMGA2 deletion more strongly reduced the phosphorylation of 4EBP1 and S6K. A strong positive correlation between HMGA2 and GPX4 expression was confirmed using immunohistochemical staining. We also demonstrated that HMGA2 mitigated the sensitivity of cancer cells to combination treatment with a ferroptosis inducer and mTORC1 inhibition or gemcitabine. In summary, our results revealed a regulatory mechanism by which HMGA2 coordinates GPX4 expression and underscores the potential value of targeting HMGA2 in cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Ferroptosis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Neoplasias Pancreáticas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina
12.
Kidney Blood Press Res ; 49(1): 196-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38368866

RESUMEN

INTRODUCTION: Acute kidney injury (AKI) is a common clinical syndrome associated with high morbidity and mortality. Inhibition of the methyltransferase enhancer of zeste homolog 2 (EZH2) by its inhibitor 3-deazaneplanocin A (3-DZNeP) exerts renal benefits in acute renal ischemia-reperfusion injury (IRI). However, the underlying mechanisms are not completely known. This study aimed to elucidate the pathological mechanism of EZH2 in renal IRI by combination of multi-omics analysis and expression profiling in a public clinical cohort. METHODS: In this study, C57BL/6 J mice were used to establish the AKI model, which were treated with 3-DZNeP for 24 h. Kidney samples were collected for RNA-seq analysis, which was combined with publicly available EZH2 chromatin immunoprecipitation sequencing (ChIP-seq) data of mouse embryonic stem cell for a joint analysis to identify differentially expressed genes. Several selected differentially expressed genes were verified by quantitative PCR. Finally, single-nucleus sequencing data and expression profiling in public clinical datasets were used to confirm the negative correlation of the selected genes with EZH2 expression. RESULTS: 3-DZNeP treatment significantly improved renal pathology and function in IRI mice. Through RNA-seq analysis combined with EZH2 ChIP-seq database, 162 differentially expressed genes were found, which might be involved in EZH2-mediated pathology in IRI kidneys. Four differential expressed genes (Scd1, Cidea, Ghr, and Kl) related to lipid metabolism or cell growth were selected based on Gene Ontology and Kyoto Encyclopedia of Genes and Genome enrichment analysis, which were validated by quantitative PCR. Data from single-nucleus RNA sequencing revealed the negative correlation of these four genes with Ezh2 expression in different subpopulations of proximal tubular cells in IRI mice in a different pattern. Finally, the negative correlation of these four genes with EZH2 expression was confirmed in patients with AKI in two clinical datasets. CONCLUSIONS: Our study indicates that Scd1, Cidea, Ghr, and Kl are downstream genes regulated by EZH2 in AKI. Upregulation of EZH2 in AKI inhibits the expression of these four genes in a different population of proximal tubular cells to minimize normal physiological function and promote acute or chronic cell injuries following AKI.


Asunto(s)
Lesión Renal Aguda , Adenosina , Adenosina/análogos & derivados , Proteína Potenciadora del Homólogo Zeste 2 , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Ratones , Adenosina/farmacología , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Masculino , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Multiómica
13.
Nat Commun ; 15(1): 709, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267417

RESUMEN

Anisotropic materials with oppositely signed dielectric tensors support hyperbolic polaritons, displaying enhanced electromagnetic localization and directional energy flow. However, the most reported hyperbolic phonon polaritons are difficult to apply for active electro-optical modulations and optoelectronic devices. Here, we report a dynamic topological plasmonic dispersion transition in black phosphorus via photo-induced carrier injection, i.e., transforming the iso-frequency contour from a pristine ellipsoid to a non-equilibrium hyperboloid. Our work also demonstrates the peculiar transient plasmonic properties of the studied layered semiconductor, such as the ultrafast transition, low propagation losses, efficient optical emission from the black phosphorus's edges, and the characterization of different transient plasmon modes. Our results may be relevant for the development of future optoelectronic applications.

14.
Curr Opin Rheumatol ; 36(2): 142-147, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916474

RESUMEN

PURPOSE OF REVIEW: The exact pathogenic mechanisms of rheumatic diseases (RMD) remain largely unknown. Increasing evidence highlights a pathogenic role of neutrophil dysregulation in the development of RMD. RECENT FINDINGS: The purpose of this review is to present a current overview of recent advancements in understanding the role of neutrophil dysfunction in the development of RMD. Additionally, this review will discuss strategies for targeting pathways associated with neutrophil dysregulation as potential treatments for RMD. One specific aspect of neutrophil dysregulation, known as neutrophil extracellular traps (NETs), will be explored. NETs have been found to contribute to chronic pulmonary inflammation and fibrosis, as well as serve as DNA scaffolds for binding autoantigens, including both citrullinated and carbamylated autoantigens. Putative therapies, such as 6-gingerol or defibrotide, have demonstrated beneficial effects in the treatment of RMD by suppressing NETs formation. SUMMARY: Recent advances have significantly reinforced the crucial role of neutrophil dysregulation in the pathogenesis of RMD. A deeper understanding of the potential mechanisms underlying this pathogenic process would aid in the development of more precise and effective targeting strategies, thus ultimately improving the outcomes of RMD.


Asunto(s)
Trampas Extracelulares , Enfermedades Reumáticas , Humanos , Neutrófilos , Autoantígenos , Enfermedades Reumáticas/tratamiento farmacológico , Enfermedades Reumáticas/etiología , Enfermedades Reumáticas/metabolismo
15.
Nature ; 625(7995): 593-602, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38093017

RESUMEN

Emerging data have shown that previously defined noncoding genomes might encode peptides that bind human leukocyte antigen (HLA) as cryptic antigens to stimulate adaptive immunity1,2. However, the significance and mechanisms of action of cryptic antigens in anti-tumour immunity remain unclear. Here mass spectrometry of the HLA class I (HLA-I) peptidome coupled with ribosome sequencing of human breast cancer samples identified HLA-I-binding cryptic antigenic peptides that were noncanonically translated by a tumour-specific circular RNA (circRNA): circFAM53B. The cryptic peptides efficiently primed naive CD4+ and CD8+ T cells in an antigen-specific manner and induced anti-tumour immunity. Clinically, the expression of circFAM53B and its encoded peptides was associated with substantial infiltration of antigen-specific CD8+ T cells and better survival in patients with breast cancer and patients with melanoma. Mechanistically, circFAM53B-encoded peptides had strong binding affinity to both HLA-I and HLA-II molecules. In vivo, administration of vaccines consisting of tumour-specific circRNA or its encoded peptides in mice bearing breast cancer tumours or melanoma induced enhanced infiltration of tumour-antigen-specific cytotoxic T cells, which led to effective tumour control. Overall, our findings reveal that noncanonical translation of circRNAs can drive efficient anti-tumour immunity, which suggests that vaccination exploiting tumour-specific circRNAs may serve as an immunotherapeutic strategy against malignant tumours.


Asunto(s)
Neoplasias de la Mama , Melanoma , Péptidos , Biosíntesis de Proteínas , ARN Circular , Animales , Femenino , Humanos , Ratones , Antígenos de Neoplasias/inmunología , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Espectrometría de Masas , Melanoma/genética , Melanoma/inmunología , Melanoma/mortalidad , Melanoma/patología , Péptidos/genética , Péptidos/inmunología , Perfilado de Ribosomas , ARN Circular/genética , ARN Circular/metabolismo , Análisis de Supervivencia
16.
Biology (Basel) ; 12(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37997964

RESUMEN

Tetrabromobisphenol A (TBBPA), a commonly utilized brominated flame retardant, is found in many types of abiotic and biotic matrices. TBBPA can increase oxidative stress, disrupt the endocrine system, cause neurodevelopmental disorders and activate peroxisome proliferator-activated receptors to modulate lipid deposits in aquatic animals. However, the toxic mechanism of TBBPA on the gut microbiota and intestinal health remains unclear. Apostichopus japonicus is an ideal model for studying the relationship between environmental contaminants and intestinal health due to its unique capacity for evisceration and quickly regenerated intestine. In the present study, we investigated the toxic mechanism of TBBPA on the gut microbiota and intestinal health in the regenerated intestine of A. japonicus. The results show that TBBPA exposure decreased the health of the regenerated intestine and the enzymatic activities, alpha diversity indices, and the relative abundance of the gut microbiota. Transcriptome analysis shows that TBBPA exposure affected lipid metabolism via the PPAR signaling pathway during the process of intestinal regeneration in A. japonicus, suggesting that TBBPA exposure can affect the composition and function of the gut microbiota and intestinal health in the regenerated intestine of A. japonicus. These results provide a basis for further research on the potential toxicity of TBBPA to the intestinal health in animals.

17.
ACS Nano ; 17(19): 18832-18842, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37729013

RESUMEN

The fabrication of atomically precise nanographanes is a largely unexplored frontier in carbon-sp3 nanomaterials, enabling potential applications in phononics, photonics and electronics. One strategy is the hydrogenation of prototypical nanographene monolayers and multilayers under vacuum conditions. Here, we study the interaction of atomic hydrogen, generated by a hydrogen source and hydrogen plasma, with hexa-peri-hexabenzocoronene on gold using integrated time-of-flight mass spectrometry, scanning tunneling microscopy and Raman spectroscopy. Density functional tight-binding molecular dynamics is employed to rationalize the conversion to sp3 carbon atoms. The resulting hydrogenation of hexa-peri-hexabenzocoronene molecules is demonstrated computationally and experimentally, and the potential for atomically precise hexa-peri-hexabenzocoronene-derived nanodiamond fabrication is proposed.

18.
Int J Med Sci ; 20(9): 1202-1211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575268

RESUMEN

Skeletal muscle injuries are commonly observed during sports and trauma. Regular exercise promotes muscle repair; however, the underlying mechanisms require further investigation. In addition to exercise, osteopontin (OPN) contributes to skeletal muscle regeneration and fibrosis following injury. However, whether and how OPN affects matrix proteins to promote post-injury muscle repair remains uncertain. We recruited regular exercise (RE) and sedentary control (SC) groups to determine plasma OPN levels. Additionally, we developed a murine model of muscle contusion injury and compared the extent of damage, inflammatory state, and regeneration-related proteins in OPN knockout (OPN KO) and wild-type (WT) mice. Our results show that regular exercise induced the increase of OPN, matrix metalloproteinases (MMPs), and transforming growth factor-ß (TGF-ß) expression in plasma. Injured muscle fibers were repaired more slowly in OPN-KO mice than in WT mice. The expression levels of genes and proteins related to muscle regeneration were lower in OPN-KO mice after injury. OPN also promotes fibroblast proliferation, differentiation, and migration. Additionally, OPN upregulates MMP expression by activating TGF-ß, which promotes muscle repair. OPN can improve post-injury muscle repair by activating MMPs and TGF-ß pathways. It is upregulated by regular exercise. Our study provides a potential target for the treatment of muscle injuries and explains why regular physical exercise is beneficial for muscle repair.


Asunto(s)
Osteopontina , Factor de Crecimiento Transformador beta , Animales , Ratones , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Músculos/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
19.
Sci Rep ; 13(1): 13997, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37634044

RESUMEN

Reward for altruism and punishment for selfishness are crucial components for the maintenance of society. Past studies have provided strong evidence that people are willing to incur costs to punish selfish behaviors and to reward altruistic behaviors, but how their willingness to do so depends on their relationship with the individuals conducting the anti-social or pro-social behaviors is much less explored. To probe into this question, we devised a three-stage experiment that combined a revised dictator game and third-party reward or punishment. We employed two payoff frameworks, alignment and conflict, and analyzed how third-party's willingness to reward and punish differed when their interests were either aligned or in conflict with the first-party under observation. We found that due to considerations for personal interests, third-party's reward and punishment levels deviated from what was deemed "legitimate" by society, that is, the level of reward and punishment that enhances society's intrinsic motivations to comply with social norms and act pro-socially. When an anti-social behavior was observed, third-party punished less severely under the alignment framework than under the conflict framework; when a pro-social behavior was observed, third-party demonstrated self-serving reward under the alignment framework, but they rewarded altruistically under the conflict framework. These findings provided evidence for third-party's self-serving reward and punishment.


Asunto(s)
Laboratorios , Castigo , Humanos , Altruismo , Conducta Social , Recompensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA