Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409160, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113640

RESUMEN

Flexible and high-performance aqueous Zn-ion batteries (ZIBs), coupled with low cost and safe, are considered as one of the most promising energy storage candidates for wearable electronics. However, most of hydrogel electrolytes suffer from poor mechanical properties and interfacial chemistry, which limits them to suppressed performance levels in flexible ZIBs, especially under harsh mechanical strains. Herein, a bio-inspired multifunctional hydrogel electrolyte network (polyacrylamide (PAM)/trehalose) with improved mechanical and adhesive properties was developed via a simple trehalose network-repairing strategy to stabilize the interfacial chemistry for highly reversible flexible ZIBs. As a result, the trehalose-modified PAM hydrogel exhibits a superior strength and stretchability up to 100 kPa and 5338%, respectively, as well as strong adhesive properties to various substrates. Also, the PAM/trehalose hydrogel electrolyte provides superior anti-corrosion capability for Zn anode and regulates Zn nucleation/growth, resulting in achieving a high Coulombic efficiency of 98.8%, and long-term stability over 2400 h. Importantly, the flexible Zn//MnO2 pouch cell exhibits excellent cycling performance under different bending conditions, which offers a great potential in flexible energy-related applications and beyond.

2.
Chemistry ; : e202402636, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109460

RESUMEN

In this work, we report the syntheses of three Pt(II) emitters, namely, Pt4N1, Pt4N2, and Pt4N3, to which their tetradentate chelates were assembled by linking two pyrazolate chelates with a single xylenylamino entity. Functionalization of Pt4N1 was achieved upon addition of electronegative CF3 substituent on pyridinyl groups and switching to more electron deficient pyrazinyl groups in giving Pt4N2 and Pt4N3, respectively. The vertical arranged xylenylamino entity has effectively suppressed the inter-molecular π-π stacking and Pt···Pt interaction, as shown by the single crystal X-ray structural analyses. Upon fabrication of OLED devices, Pt4N2 and Pt4N3 based devices delivered efficient cyan and green emission, with an EQEmax of 15.2% and 11.2%, respectively, affirming the successfulness of the tetradentate chelating strategy.

3.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065861

RESUMEN

The performance-degradation pattern of the planetary roller screw mechanism (PRSM) is difficult to predict and evaluate due to a variety of factors. Load-carrying capacity, transmission accuracy, and efficiency are the main indicators for evaluating the performance of the PRSM. In this paper, a testing device for the comprehensive performance of the PRSM is designed by taking into account the coupling relationships among temperature rise, vibration, speed, and load. First, the functional design and error calibration of the testing device were conducted. Secondly, the PRSM designed in the supported project was taken as the research object to conduct degradation tests on its load-bearing capacity and transmission accuracy and analyze the changes in transmission efficiency. Third, the thread profile and wear condition were scanned and inspected using a universal tool microscope and an optical microscope. Finally, based on the monitoring module of the testing device, the vibration status during the PRSM testing process was collected in real time, laying a foundation for the subsequent assessment of the changes in the performance state of the PRSM. The test results reveal the law of performance degradation of the PRSM under the coupled effects of temperature, vibration, speed, and load.

4.
Neuromolecular Med ; 26(1): 29, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014255

RESUMEN

Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.


Asunto(s)
Apoptosis , Demencia Vascular , Hipocampo , Trastornos de la Memoria , Neuronas , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Xantófilas , Animales , Xantófilas/uso terapéutico , Xantófilas/farmacología , Hipocampo/efectos de los fármacos , Demencia Vascular/tratamiento farmacológico , Ratas , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Estrés Oxidativo/efectos de los fármacos , Neuronas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Muerte Celular/efectos de los fármacos , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Prueba del Laberinto Acuático de Morris/efectos de los fármacos
5.
Adv Sci (Weinh) ; : e2405158, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021327

RESUMEN

Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.

6.
Am J Transl Res ; 16(6): 2464-2473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006283

RESUMEN

BACKGROUND: Femoropopliteal artery occlusion is a prevalent peripheral arterial disease, and endovascular therapy has become the preferred treatment. Accurate assessment of balloon dilation efficacy is crucial for determining the necessity for subsequent stent implantation. This study aims to investigate the use of interlesion arterial pressure gradients as a novel approach to assess balloon dilation efficacy and guide stent implantation decisions. METHODS: A prospective, randomized, controlled trial was conducted on 100 patients with femoropopliteal artery occlusion. Patients were randomized into a control group (n=50) and an experimental group (n=50). Stent implantation was performed in the control group according to standard indications, while the experimental group underwent stent implantation only if the mean arterial pressure gradient exceeded 10 mmHg or fractional flow reserve (FFR) fell below 0.85. Post-intervention, pressure measurements and angiography were used to evaluate residual stenosis, dissection, and pressure gradients. RESULTS: Lesions were categorized into stent-indicated and non-indicated groups. In the non-stent-indicated lesions, the experimental group demonstrated significantly higher patency rates for lesions with pFFR < 0.85 or ΔP > 10 mmHg compared to the control group (92.9% vs. 50.0%, P=0.039). There was no significant difference in patency rates between the experimental and control groups for stent-indicated lesions. CONCLUSION: Combining pressure measurement with angiography provides a more precise evaluation of balloon dilation efficacy and stent implantation indicators in femoropopliteal artery occlusive disease. Further research is needed to establish optimal pressure threshold values and refine treatment guidelines.

7.
PeerJ Comput Sci ; 10: e2040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855237

RESUMEN

The advancement of graph neural networks (GNNs) has made it possible to accurately predict metabolic sites. Despite the combination of GNNs with XGBOOST showing impressive performance, this technology has not yet been applied in the realm of metabolic site prediction. Previous metabolic site prediction tools focused on bonds and atoms, regardless of the overall molecular skeleton. This study introduces a novel tool, named D-CyPre, that amalgamates atom, bond, and molecular skeleton information via two directed message-passing neural networks (D-MPNN) to predict the metabolic sites of the nine cytochrome P450 enzymes using XGBOOST. In D-CyPre Precision Mode, the model produces fewer, but more accurate results (Jaccard score: 0.497, F1: 0.660, and precision: 0.737 in the test set). In D-CyPre Recall Mode, the model produces less accurate, but more comprehensive results (Jaccard score: 0.506, F1: 0.669, and recall: 0.720 in the test set). In the test set of 68 reactants, D-CyPre outperformed BioTransformer on all isoenzymes and CyProduct on most isoenzymes (5/9). For the subtypes where D-CyPre outperformed CyProducts, the Jaccard score and F1 scores increased by 24% and 16% in Precision Mode (4/9) and 19% and 12% in Recall Mode (5/9), respectively, relative to the second-best CyProduct. Overall, D-CyPre provides more accurate prediction results for human CYP450 enzyme metabolic sites.

8.
Chem Sci ; 15(24): 9287-9297, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38903221

RESUMEN

We describe a dynamic crystalline material that integrates mechanical, thermal, and light modes of operation, with unusual robustness and resilience and a variety of both slow and fast kinematic effects that occur on very different time scales. In the mechanical mode of operation, crystals of this material are amenable to elastic deformation, and they can be reversibly morphed and even closed into a loop, sustaining strains of up to about 2.6%. Upon release of the external force, the crystals resume their original shape without any sign of damage, demonstrating outstanding elasticity. Application of torque results in plastic twisting for several rotations without damage, and the twisted crystal can still be bent elastically. The thermal mode of operation relies on switching the lattice at least several dozen times. The migration of the phase boundaries depends on the crystal habit. It can be precisely controlled by temperature, and it is accompanied by both slow and fast motions, including shear deformation and leaping. Parallel boundaries result in a thermomechanical effect, while non-parallel boundaries result in a thermosalient effect. Finally, the photochemical mode of operation is driven by isomerization and can be thermally reverted. The structure of the crystal can also be switched photochemically, and the generation of a bilayer induces rapid bending upon exposure to ultraviolet light, an effect that further diversifies the mechanical response of the material. The small structural changes, low-energy and weak intramolecular hydrogen bonds, and shear deformation, which could dissipate part of the elastic energy, are considered to be the decisive factors for the conservation of the long-range order and the extraordinary diversity in the response of this, and potentially many other dynamic crystalline materials.

9.
BMC Plant Biol ; 24(1): 376, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714947

RESUMEN

BACKGROUND: Casuarina equisetifolia (C. equisetifolia) is a woody species with many excellent features. It has natural resistance against drought, salt and saline-alkali stresses. WRKY transcription factors (TFs) play significant roles in plant response to abiotic stresses, therefore, molecular characterization of WRKY gene family under abiotic stresses holds great significance for improvement of forest trees through molecular biological tools. At present, WRKY TFs from C. equisetifolia have not been thoroughly studied with respect to their role in salt and saline-alkali stresses response. The current study was conducted to bridge the same knowledge gap. RESULTS: A total of 64 WRKYs were identified in C. equisetifolia and divided into three major groups i.e. group I, II and III, consisting of 10, 42 and 12 WRKY members, respectively. The WRKY members in group II were further divided into 5 subgroups according to their homology with Arabidopsis counterparts. WRKYs belonging to the same group exhibited higher similarities in gene structure and the presence of conserved motifs. Promoter analysis data showed the presence of various response elements, especially those related to hormone signaling and abiotic stresses, such as ABRE (ABA), TGACG (MeJA), W-box ((C/T) TGAC (T/C)) and TC-rich motif. Tissue specific expression data showed that CeqWRKYs were mainly expressed in root under normal growth conditions. Furthermore, most of the CeqWRKYs were up-regulated by NaCl and NaHCO3 stresses with few of WRKYs showing early responsiveness to both stresses while few others exhibiting late response. Although the expressions of CeqWRKYs were also induced by cold stress, the response was delayed compared with other stresses. Transgenic C. equisetifolia plants overexpressing CeqWRKY11 displayed lower electrolyte leakage, higher chlorophyll content, and enhanced tolerance to both stresses. The higher expression of abiotic stress related genes, especially CeqHKT1 and CeqPOD7, in overexpression lines points to the maintenance of optimum Na+/K+ ratio, and ROS scavenging as possible key molecular mechanisms underlying salt stress tolerance. CONCLUSIONS: Our results show that CeqWRKYs might be key regulators of NaCl and NaHCO3 stresses response in C. equisetifolia. In addition, positive correlation of CeqWRKY11 expression with increased stress tolerance in C. equisetifolia encourages further research on other WRKY family members through functional genomic tools. The best candidates could be incorporated in other woody plant species for improving stress tolerance.


Asunto(s)
Proteínas de Plantas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Cloruro de Sodio/farmacología , Filogenia , Bicarbonato de Sodio/farmacología , Estrés Salino/genética , Estrés Fisiológico/genética , Genoma de Planta
10.
Mol Med ; 30(1): 58, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720283

RESUMEN

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Mitofagia , Transducción de Señal , Calcificación Vascular , Animales , Mitofagia/efectos de los fármacos , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo , Calcificación Vascular/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Exenatida/farmacología , Exenatida/uso terapéutico , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
11.
Hypertens Res ; 47(7): 1908-1924, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750218

RESUMEN

Phenotypic shift of vascular smooth muscle cells (VSMCs) plays a key role in intimal hyperplasia, especially in patients with diabetes mellitus (DM). This study aimed to investigate the role of dynamin-related protein 1 (DRP1) in mitochondrial fission-mediated VSMC phenotypic shift and to clarify whether DRP1 is the therapeutic target of isoliquiritigenin (ISL). Wire injury of carotid artery or platelet-derived growth factor treatment was performed in DM mice or high-glucose cultured human aortic smooth muscle cells (HASMCs), respectively. The effects of DRP1 silencing on DM-induced intimal hyperplasia were investigated both in vivo and in vitro. Phenotypic shift of HASMCs was evaluated by detection of reactive oxygen species (ROS) generation, cell viability, and related protein expressions. The effects of ISL on DM-induced intimal hyperplasia were evaluated both in vivo and in vitro. DRP1 silencing and ISL treatment attenuated DM-induced intimal hyperplasia with reduced ROS generation, cell viability, and VSMC dedifferentiation. The GTPase domain of DRP1 protein played a critical role in mitochondrial fission in DM-induced VSMC phenotypic shift. Cellular experiments showed that ISL inhibited mitochondrial fission and reduced the GTPase activity of DRP1, which was achieved by the directly binding to K216 of the DRP1 GTPase domain. ISL attenuated mouse intimal hyperplasia by reducing GTPase activity of DRP1 and inhibiting mitochondrial fission in vivo. In conclusion, increased GTPase activity of DRP1 aggregated DM-induced intimal hyperplasia by increasing mitochondrial fission-mediated VSMC phenotypic shift. ISL attenuated mouse intimal hyperplasia by reducing DRP1 GTPase activity and inhibiting mitochondrial fission of VSMCs.


Asunto(s)
Chalconas , Dinaminas , Hiperplasia , Dinámicas Mitocondriales , Animales , Dinámicas Mitocondriales/efectos de los fármacos , Dinaminas/metabolismo , Chalconas/farmacología , Chalconas/uso terapéutico , Ratones , Humanos , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Especies Reactivas de Oxígeno/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Células Cultivadas , Ratones Endogámicos C57BL , Túnica Íntima/efectos de los fármacos , Túnica Íntima/patología , Túnica Íntima/metabolismo
12.
Diagn Microbiol Infect Dis ; 109(3): 116289, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663334

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening immune disorder categorized as familial HLH or secondary HLH. Our case report describes a 63-year-old woman with epilepsy whose clinical signs were unremitting fever and altered consciousness. Primary abnormalities consisted of fever, splenomegaly, cytopenia, hypertriglyceridemia, hyperferritinemia and hemophagocytosis in the bone marrow. Results of blood next generation sequencing and blood culture confirmed Brucella infection. This report illustrates a sHLH case caused by Brucella melitensis infection. Here, we review the classification, clinical features, diagnostic methods, treatment regimens, differential diagnosis, and prognosis of HLH and brucellosis.


Asunto(s)
Brucella melitensis , Brucelosis , Linfohistiocitosis Hemofagocítica , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/microbiología , Linfohistiocitosis Hemofagocítica/etiología , Humanos , Brucelosis/diagnóstico , Brucelosis/complicaciones , Brucelosis/tratamiento farmacológico , Femenino , Persona de Mediana Edad , Brucella melitensis/aislamiento & purificación , Brucella melitensis/genética , Diagnóstico Diferencial , Antibacterianos/uso terapéutico , Médula Ósea/patología , Médula Ósea/microbiología
15.
Sensors (Basel) ; 24(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38676276

RESUMEN

Partial discharge detection is considered a crucial technique for evaluating insulation performance and identifying defect types in cable terminals of high-speed electric multiple units (EMUs). In this study, terminal samples exhibiting four typical defects were prepared from high-speed EMUs. A cable discharge testing system, utilizing high-frequency current sensing, was developed to collect discharge signals, and datasets corresponding to these defects were established. This study proposes the use of the convolutional neural network (CNN) for the classification of discharge signals associated with specific defects, comparing this method with two existing neural network (NN)-based classification models that employ the back-propagation NN and the radial basis function NN, respectively. The comparative results demonstrate that the CNN-based model excels in accurately identifying signals from various defect types in the cable terminals of high-speed EMUs, surpassing the two existing NN-based classification models.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38686647

RESUMEN

Nanocarriers have been researched comprehensively for the development of novel boron-containing agents in boron neutron capture therapy (BNCT). We designed and synthesized a multifunctional mesoporous silica nanoparticle (MSN)-based boron-containing agent. The latter was coated with a lipid bilayer (LB) and decorated with SP94 peptide (SFSIIHTPILPL) on the surface as SP94-LB@BA-MSN. The latter incorporated boric acid (BA) into hydrophobic mesopores, coated with an LB, and modified with SP94 peptide on the LB. SP94-LB@BA-MSN enhanced nano interface tumor-targeting ability but also prevented the premature release of drugs, which is crucial for BNCT because adequate boron content in tumor sites is required. SP94-LB@BA-MSN showed excellent efficacy in the BNCT treatment of HepG-2 cells. In animal studies with tumor-bearing mice, SP94-LB@BA-MSN exhibited a satisfactory accumulation at the tumor site. The boron content reached 40.18 ± 5.41 ppm in the tumor site 4 h after injection, which was 8.12 and 15.51 times higher than those in mice treated with boronated phenylalanine and those treated with BA. For boron, the tumor-to-normal tissue ratio was 4.41 ± 1.13 and the tumor-to-blood ratio was 5.92 ± 0.45. These results indicated that nanoparticles delivered boron to the tumor site effectively while minimizing accumulation in normal tissues. In conclusion, this composite (SP94-LB@BA-MSN) shows great promise as a boron-containing delivery agent for the treatment of hepatocellular carcinoma using BNCT. These findings highlight the potential of MSNs in the field of BNCT.

17.
Clin Neurol Neurosurg ; 240: 108245, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518629

RESUMEN

BACKGROUND: The percutaneous balloon compression (PBC) is a safe and simple treatment for trigeminal neuralgia. It works by compressing the Gasserian ganglion to block pain signals from the trigeminal nerve. To ensure effectiveness, it is important to focus the compression on the lower part of the balloon. OBJECTIVE: To validate the efficacy of a riveting technique, specifically pulling an inflated balloon, in order to apply enhanced compression on the ganglion. METHODS: To compare this novel technique with the conventional approach, a retrospective investigation was conducted on consecutive PBCs performed in our department between 2019 and 2022. For postoperative outcome assessment, efficacy was defined as achieving a VAS score of 0 or an improvement exceeding 5 points. Postoperative numbness was graded as none, mild, or severe based on its impact on daily life and tolerance level. RESULTS: Excluding cases with missed follow-up, a total of 179 participants were included in the study, and their follow-up period ranged up to 40 months. Postoperatively, symptomatic remission was achieved by 98.1% (52/53) of patients in the riveting technique group compared to 87.3% (110/126) in the conventional group (P<0.05). At the last follow-up period, with recurrence observed over time, the long-term efficacy of riveting and conventional groups were 94.3% and 74.6%, respectively (P<0.05). The majority of cases in both groups experienced ipsilateral facial numbness immediately following PBC, which appeared to diminish after 3 months in both groups without significant difference between them (P>0.05).


Asunto(s)
Neuralgia del Trigémino , Neuralgia del Trigémino/cirugía , Neuralgia del Trigémino/terapia , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Resultado del Tratamiento , Ganglio del Trigémino/cirugía , Adulto , Anciano de 80 o más Años
19.
Sci Total Environ ; 918: 170622, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325490

RESUMEN

In this study, the aerosol size distributions, cloud condensation nuclei (CCN) number concentration (NCCN), single-particle chemical composition and meteorological data were collected from May 12 to June 8, 2017, at the summit of Mt. Tai. The effects of new particle formation (NPF) events and aerosol chemical components on CCN at Mt. Tai were analyzed in detail. The results showed that, NPF events significantly enhanced the CCN population, and the enhancement effect increased with increasing supersaturation (SS) value at Mt.Tai. NCCN at SS ranging from 0.1 to 0.9 % on NPF days was 10.9 %, 36.5 %, 44.6 %, 53.5 % and 51.5 % higher than that on non-NPF days from 10:00-13:00 as NPF events progressed. The effect of chemical components on CCN activation under the influence of NPF events was greater than that in the absence of NPF events. The correlation coefficients of EC-Nitrate particles (EC-Sulfate particles) and CCN at all SS levels on NPF days were 1.31-1.59 times (1.17-1.35 times) higher than those on non-NPF days. Nitrate particles promoted CCN activation but sulfate particles inhibited activation at Mt. Tai. There are differences or even opposite effects of the same group of particles on CCN activation under the influence of NPF events in different air masses. EC-Sulfate particles inhibited CCN activation at all SS levels for type I but weakly promoted activation at lower SS ranging from 0.1 to 0.3 % and weakly inhibited it at higher 0.9 % SS for type II. OCEC particles significantly inhibited CCN activation for type II, and this effect decreased with increasing SS. OCEC particles only weakly inhibited activation at SS ranging from 0.5 to 0.7 % for type I. OCEC particles only weakly inhibited this process at 0.1 % SS, while they very weakly promoted activation for SS > 0.1 %. This reveals that the CCN activity is not only related to the chemical composition of the particles, but the mixing state also has an important effect on the CCN activity.

20.
J Ethnopharmacol ; 325: 117868, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38325668

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Da Chuanxiong Formula (DCX) is a traditional herbal compound composed of Gastrodia elata Bl. and Ligusticum chuanxiong Hort, which could significantly enhance blood circulation and neuroprotection, showing promise in treating Vascular Cognitive Impairment (VCI). AIM OF STUDY: This study aims to elucidate the potential of DCX in treating VCI and its underlying mechanism. MATERIALS AND METHODS: Firstly, the cognitive behavior level, blood flow changes, and brain pathology changes were evaluated through techniques such as the Morris water maze, step-down, laser speckle, coagulation analysis, and pathological staining to appraise the DCX efficacy. Then, the DCX targeting pathways were decoded by merging metabolomics with transcriptomics. Finally, the levels of reactive oxygen species (ROS), Fe2+, and lipid peroxidation related to the targeting signaling pathways of DCX were detected by kit, and the expression levels of mRNAs or proteins related to ferroptosis were determined by qPCR or Western blot assays respectively. RESULTS: DCX improved cognitive abilities and cerebral perfusion significantly, and mitigated pathological damage in the hippocampal region of VCI model rats. Metabolomics revealed that DCX was able to call back 33 metabolites in plasma and 32 metabolites in brain samples, and the majority of the differential metabolites are phospholipid metabolites. Transcriptomic analysis revealed that DCX regulated a total of 3081 genes, with the ferroptosis pathway exhibiting the greatest impact. DCX inhibited ferroptosis of VCI rates by decreasing the levels of ferrous iron, ROS, and malondialdehyde (MDA) while increasing the level of superoxide dismutase (SOD) and glutathione (GSH) in VCI rats. Moreover, the mRNA and protein levels of ACSL4, LPCAT3, ALOX15, and GPX4, which are related to lipid metabolism in ferroptosis, were also regulated by DCX. CONCLUSION: Our research findings indicated that DCX could inhibit ferroptosis through the ACSL4/GPX4 signaling pathway, thereby exerting its therapeutic benefits on VCI.


Asunto(s)
Disfunción Cognitiva , Ferroptosis , Animales , Ratas , Especies Reactivas de Oxígeno , Metabolómica , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Perfilación de la Expresión Génica , Glutatión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA