Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 6(4): 3354-3362, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553953

RESUMEN

The 1.0G dendrimer polyamidoamine (PAMAM), 3,5-dichlorosalicylaldehyde, and TiCl4·2THF were used as synthetic materials, and the dendritic salicylaldehyde imide ligand with substituent hindrance and its titanium catalyst were synthesized by the condensation reaction of Schiff base. The structure of the synthesized products was characterized by infrared spectroscopy, nuclear magnetic resonance hydrogen spectroscopy, ultraviolet spectroscopy, electrospray mass spectrometry, and inductively coupled plasma-mass spectrometry. Activated methylaluminoxane (MAO) was used as a catalyst precursor for ethylene polymerization in the process of ethylene catalytic. The effects of ethylene polymerization were studied in terms of the Al/Ti molar ratio, reaction time, reaction temperature, polymerization pressure, and ligand structure of the catalyst. The results show good catalytic performance (70.48 kg PE/mol Ti·h) for ethylene polymerization because of the existence of ortho substituent hindrance on the salicylaldehyde skeleton. Furthermore, high-temperature gel permeation chromatography (GPC)-IR, differential scanning calorimetry (DSC), and torque rheometer were used to characterize the microstructure, thermal properties, and viscoelastic state of the polyethylene samples obtained. The results showed that the product was ultrahigh-molecular-weight polyethylene.

2.
Des Monomers Polym ; 24(1): 13-21, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33536834

RESUMEN

The 1.0 G dendrimer (C22H48N10O4),3,5-di-tert-butylsalicylaldehyde and TiCl4 · 2THF were used as the synthetic materials, and the dendritic salicylaldehyde imide ligand with substituent hindrance and its titanium catalyst were synthesized by the condensation reaction of schiff base. The structure of the synthesized products was characterized by infrared spectroscopy, nuclear magnetic resonance hydrogen spectroscopy, ultraviolet spectroscopy, electrospray mass spectrometry, and inductively coupled plasma mass spectrometry, The actual structure is consistent with the theoretical design structure. Activated methylaluminoxane (MAO) was used as a catalyst precursor for ethylene polymerization in the process of ethylene catalytic. The effects of ethylene polymerization were studied in terms of the Al/Ti molar ratio, reaction time, reaction temperature, polymerization pressure, and ligand structure of the catalyst. The results show at the reaction temperature of 25°C, the reaction time was 30 min, and the ethylene pressure was 1.0 MPa and Al/Ti was 1,000, the catalytic activity can reach 78.56 kg PE/(mol Ti.h). Furthermore, high-temperature GPC-IR, DSC, and torque rheometer were used to characterized the microstructure, thermal properties, and viscoelastic state of polyethylene samples obtained. The results showed that the product was ultra-high-molecular-weight polyethylene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA