Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1422471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006754

RESUMEN

The fermentation process for Jiang-flavored baijiu using sorghum as the raw material involves a variety of microorganisms. However, the specific physicochemical characteristics of sorghum and microbial composition on its surface have not been fully elucidated. We aimed to perform a comprehensive comparative analysis of the variations in physicochemical properties and surface microflora in waxy sorghum samples from three prominent production regions in China (Renhuai, Jinsha, and Duyun). Multivariate statistical assessments were conducted that incorporated local soil and climate variables. The results showed that Cyanobacteria, unclassified bacteria, Proteobacteria, Firmicutes, and Bacteroidota were the dominant bacteria in these regions. These bacteria were associated with ethyl acetate, ethyl caprylate, ethyl lactate, and butyl groups, which synergistically produce flavorful compounds. The surface bacterial communities were affected by soil total phosphorus, altitude, diurnal temperature range, monthly mean temperature, precipitation, and effective accumulated temperature. The findings of this study provide a new perspective on microorganisms related to Jiang-flavored baijiu and can help establish a reference for the stability of liquor quality.

2.
Natl Sci Rev ; 11(7): nwae205, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39071097

RESUMEN

Irreversible interfacial reactions at the anodes pose a significant challenge to the long-term stability and lifespan of zinc (Zn) metal batteries, impeding their practical application as energy storage devices. The plating and stripping behavior of Zn ions on polycrystalline surfaces is inherently influenced by the microscopic structure of Zn anodes, a comprehensive understanding of which is crucial but often overlooked. Herein, commercial Zn foils were remodeled through the incorporation of cerium (Ce) elements via the 'pinning effect' during the electrodeposition process. By leveraging the electron-donating effect of Ce atoms segregated at grain boundaries (GBs), the electronic configuration of Zn is restructured to increase active sites for Zn nucleation. This facilitates continuous nucleation throughout the growth stage, leading to a high-rate instantaneous-progressive composite nucleation model that achieves a spatially uniform distribution of Zn nuclei and induces spontaneous grain refinement. Moreover, the incorporation of Ce elements elevates the site energy of GBs, mitigating detrimental parasitic reactions by enhancing the GB stability. Consequently, the remodeled ZnCe electrode exhibits highly reversible Zn plating/stripping with an accumulated capacity of up to 4.0 Ah cm-2 in a Zn symmetric cell over 4000 h without short-circuit behavior. Notably, a ∼0.4 Ah Zn||NH4V4O10 pouch cell runs over 110 cycles with 83% capacity retention with the high-areal-loading cathode (≈20 mg cm-2). This refining-grains strategy offers new insights into designing dendrite-free metal anodes in rechargeable batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA