Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36659, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263178

RESUMEN

Extrachromosomal circular DNA (eccDNA), a pervasive yet enigmatic component of the eukaryotic genome, exists autonomously from its chromosomal counterparts. Ubiquitous in eukaryotes, eccDNA plays a critical role in the orchestration of cellular processes and the etiology of diseases, particularly cancers. However, the full scope of its influence on health and disease remains elusive, presenting a rich vein of research yet to be mined. Unraveling the complexities of eccDNA necessitates a distillation of methodologies - from biogenesis to functional analysis - a landscape we overview in this study with precision and clarity. Here, we systematically outline cutting-edge methodologies from high-throughput sequencing and bioinformatics to experimental validations, showcasing the intricate world of eccDNAs. We combed through a treasure trove of auxiliary research resources and analytical tools. Moreover, we chart a course for future inquiry, illuminating the horizon with potential groundbreaking strategies for designing eccDNA research projects and pioneering new methodological frontiers.

2.
Food Chem Toxicol ; 174: 113683, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36809826

RESUMEN

Inflammation is an important part of the development of various organ diseases. The inflammasome, as an innate immune receptor, plays an important role in the formation of inflammation. Among various inflammasomes, the NLRP3 inflammasome is the most well studied. The NLRP3 inflammasome is composed of skeletal protein NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1. There are three types of activation pathways: (1) "classical" activation pathway; (2) "non-canonical" activation pathway; (3) "alternative" activation pathway. The activation of NLRP3 inflammasome is involved in many inflammatory diseases. A variety of factors (such as genetic factors, environmental factors, chemical factors, viral infection, etc.) have been proved to activate NLRP3 inflammasome and promote the inflammatory response of the lung, heart, liver, kidney and other organs in the body. Especially, the mechanism of NLRP3 inflammation and its related molecules in its associated diseases remains not to be summarized, namely they may promote or delay inflammatory diseases in different cells and tissues. This article reviews the structure and function of the NLRP3 inflammasome and its role in various inflammations, including inflammations caused by chemically toxic substances.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación , Apoptosis , Caspasa 1/genética , Interleucina-1beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA