RESUMEN
Renal cell carcinoma (RCC) represents a significant portion of genitourinary cancers, marked by challenging prognosis and high metastasis rates. Immunotherapy has been applied in managing advanced renal cell carcinoma, but the therapeutic outcomes are unsatisfactory. In this study, we order to construct a Janus kinase/signal transduction and activator transcriptional (JAK/STAT)-related signature linked to kidney patient outcomes for better predicting the efficacy to immune checkpoint inhibitors (ICIs) and to provide guidance for effective combination therapy. We screened 25 differentially expressed genes (DEGs) that exhibited high expression in RCC samples and were enriched in the JAK-STAT signaling pathway. Among these genes, 11 key genes were identified and correlated with the expectation of Kidney Clear Cell Carcinoma (KIRC) patients and all these genes was significantly elevated in RCC tumor tissues and cancer cells compared to para-cancer tissues and normal renal cells. Utilizing these 11 genes, we divided RCC patients into high-risk and low-risk groups. We found a clear correlation between the clinicopathologic factors of KIRC patients and the JAK-STAT-related risk score. And the IHC results shown that the JAK3 and STAT4 expression of tumor was significantly higher than normal tissue in RCC patients, the level of JAK3 and STAT4 was positively related to the T stage of RCC patients. In addition, high-risk patients had a poorer prognosis and greater protumor immune cell infiltration, and benefitted less from immunotherapy than did low-risk patients. Furthermore, the JAK-STAT-related risk score can predict disease-free survival (DFS) in RCC patients according to the nomogram, which constructed in combination with other clinical features such as age, TNM-staging and stage. Our study demonstrated the JAK-STAT signaling pathway's important regulatory function in RCC tumor immunity. This insight not only enhances our ability to accurately predict the survival rate of RCC patients, but also underscores a potential therapeutic alternative for RCC, involving the combined targeting of the JAK-STAT pathway and immune checkpoints.
Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Inmunoterapia , Neoplasias Renales , Transducción de Señal , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Inmunoterapia/métodos , Femenino , Masculino , Factor de Transcripción STAT4/genética , Factor de Transcripción STAT4/metabolismo , Janus Quinasa 3/genética , Janus Quinasa 3/metabolismo , Quinasas Janus/metabolismo , Quinasas Janus/genética , Persona de Mediana Edad , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Transcriptoma , Perfilación de la Expresión GénicaRESUMEN
Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.
Asunto(s)
Mieloma Múltiple , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Peroxidación de Lípido , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológicoRESUMEN
BACKGROUND: Oxaliplatin resistance usually leads to therapeutic failure and poor prognosis in colorectal cancer (CRC), while the underlying mechanisms are not yet fully understood. Metabolic reprogramming is strongly linked to drug resistance, however, the role and mechanism of metabolic reprogramming in oxaliplatin resistance remain unclear. Here, we aim to explore the functions and mechanisms of purine metabolism on the oxaliplatin-induced apoptosis of CRC. METHODS: An oxaliplatin-resistant CRC cell line was generated, and untargeted metabolomics analysis was conducted. The inosine 5'-monophosphate dehydrogenase type II (IMPDH2) expression in CRC cell lines was determined by quantitative real-time polymerase chain reaction (qPCR) and western blotting analysis. The effects of IMPDH2 overexpression, knockdown and pharmacological inhibition on oxaliplatin resistance in CRC were assessed by flow cytometry analysis of cell apoptosis in vivo and in vitro. RESULTS: Metabolic analysis revealed that the levels of purine metabolites, especially guanosine monophosphate (GMP), were markedly elevated in oxaliplatin-resistant CRC cells. The accumulation of purine metabolites mainly arose from the upregulation of IMPDH2 expression. Gene set enrichment analysis (GSEA) indicated high IMPDH2 expression in CRC correlates with PURINE_METABOLISM and MULTIPLE-DRUG-RESISTANCE pathways. CRC cells with higher IMPDH2 expression were more resistant to oxaliplatin-induced apoptosis. Overexpression of IMPDH2 in CRC cells resulted in reduced cell death upon treatment with oxaliplatin, whereas knockdown of IMPDH2 led to increased sensitivity to oxaliplatin through influencing the activation of the Caspase 7/8/9 and PARP1 proteins on cell apoptosis. Targeted inhibition of IMPDH2 by mycophenolic acid (MPA) or mycophenolate mofetil (MMF) enhanced cell apoptosis in vitro and decreased in vivo tumour burden when combined with oxaliplatin treatment. Mechanistically, the Wnt/ß-catenin signalling was hyperactivated in oxaliplatin-resistant CRC cells, and a reciprocal positive regulatory mechanism existed between Wnt/ß-catenin and IMPDH2. Blocking the Wnt/ß-catenin pathway could resensitize resistant cells to oxaliplatin, which could be restored by the addition of GMP. CONCLUSIONS: IMPDH2 is a predictive biomarker and therapeutic target for oxaliplatin resistance in CRC.
Asunto(s)
Neoplasias Colorrectales , beta Catenina , Humanos , Apoptosis , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Vía de Señalización WntRESUMEN
Cuproptosis is a type of programmed cell death triggered by accumulation of intracellular copper which was considered closely related to tumor progression. The study of cuproptosis in multiple myeloma (MM) is however limited. To determine the prognostic significance of cuproptosis-related gene signature in MM, we interrogated gene expression and overall survival with other available clinical variables from public datasets. Four cuproptosis-related genes were included to establish a prognostic survival model by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, which showed a good performance on prognosis prediction in both training and validation cohorts. Patients with higher cuproptosis-related risk score (CRRS) exhibited worse prognosis compared with lower risk score. Survival prediction capacity and clinical benefit were elevated after integrating CRRS to existing prognostic stratification system (International Staging System, ISS or Revised International Staging System, RISS) both on 3-year and 5-year survival. Based on CRRS groups, functional enrichment analysis and immune infiltration in bone marrow microenvironment revealed correlation between CRRS and immunosuppression. In conclusion, our study found that cuproptosis-related gene signature is an independent poor prognostic factor and functions negatively on immune microenvironment, which provides another perspective on prognosis assessment and immunotherapy strategy in MM.
Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Pronóstico , Terapia de Inmunosupresión , Inmunoterapia , Apoptosis , Microambiente Tumoral/genéticaRESUMEN
Drug-resistant epilepsy (DRE), also known as intractable epilepsy or refractory epilepsy, is a disease state with long-term poorly controlled seizures attack. Without effective treatment, patients are at an elevated risk of injury, premature death, mental disorders, and poor quality of life, increasing the need for a fresh perspective on the etiology and treatment of DRE. The gut is known to harbor a wide variety of microorganisms that can regulate the host's response to exogenous signals and participate in various physiological and pathological processes in the human body. Interestingly, emerging evidence has uncovered the changes in gut microbiota in patients with epilepsy, particularly those with DRE. In addition, both dietary interventions and specific antibiotic therapy have been proven to be effective in restoring the microecological environment and, more importantly, reducing seizures. Here, we reviewed recent studies on DRE and the involvement of gut microbiota in it, describing changes in the gut microflora composition in patients with DRE and corresponding animal models. Furthermore, the influence of the ketogenic diet, probiotics, fecal microbiota transplantation (FMT), and antibiotics as microbiome-related factors on seizure control and its possible mechanisms are broadly discussed. Finally, we highlighted the significance of gut microbiome in DRE, in order to provide a new prospect for early identification and individualized treatment of patients with DRE.
RESUMEN
TJP1, an adaptor protein of the adhesive barrier, has been found to exhibit distinct oncogenic or tumor suppressor functions in a cell-type dependent manner. However, the role of TJP1 in kidney renal clear cell carcinoma (KIRC) remains to be explored. The results showed a marked down-regulation of TJP1 in KIRC tissues compared to normal tissues. Low expression of TJP1 was significantly associated with high grade and poor prognosis in KIRC. Autophagosome aggregation and LC3 II conversion demonstrated that TJP1 may induce autophagy signaling in 786-O and OS-RC-2 cells. Knockdown of TJP1 led to a decrease in the expression of autophagy-related genes, such as BECN1, ATG3, and ATG7. Consistently, TJP1 expression showed a significant positive correlation with these autophagy-related genes in KIRC patients. Furthermore, the overall survival analysis of KIRC patients based on the expression of autophagy-related genes revealed that most of these genes were associated with a good prognosis. TJP1 overexpression significantly suppressed cell proliferation and tumor growth in 786-O cells, whereas the addition of an autophagy inhibitor diminished its inhibitory function. Taken together, these results suggest that TJP1 serves as a favorable prognostic marker and induces autophagy to suppress cell proliferation and tumor growth in KIRC.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Proteína de la Zonula Occludens-1 , Autofagia/genética , Carcinoma de Células Renales/genética , Proliferación Celular/genética , Neoplasias Renales/genética , Riñón , PronósticoRESUMEN
Multiple myeloma (MM) is the second most common haematological malignancy. Despite the development of new drugs and treatments in recent years, the therapeutic outcomes of patients are not satisfactory. It is necessary to further investigate the molecular mechanism underlying MM progression. Herein, we found that high E2F2 expression was correlated with poor overall survival and advanced clinical stages in MM patients. Gain- and loss-of-function studies showed that E2F2 inhibited cell adhesion and consequently activated cell epithelial-to-mesenchymal transition (EMT) and migration. Further experiments revealed that E2F2 interacted with the PECAM1 promoter to suppress its transcriptional activity. The E2F2-knockdown-mediated promotion of cell adhesion was significantly reversed by the repression of PECAM1 expression. Finally, we observed that silencing E2F2 significantly inhibited viability and tumour progression in MM cell models and xenograft mouse models respectively. This study demonstrates that E2F2 plays a vital role as a tumour accelerator by inhibiting PECAM1-dependent cell adhesion and accelerating MM cell proliferation. Therefore, E2F2 may serve as a potential independent prognostic marker and therapeutic target for MM.
Asunto(s)
Mieloma Múltiple , Humanos , Animales , Ratones , Mieloma Múltiple/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Adhesión Celular/genética , Línea Celular Tumoral , Regulación de la Expresión Génica , Proliferación Celular , Factor de Transcripción E2F2/genética , Factor de Transcripción E2F2/metabolismoRESUMEN
L-theanine (N-ethyl-γ-glutamine) is the main amino acid in tea leaves. It not only contributes to tea flavor but also possesses several health benefits. Compared with its sedative and calming activities, the immunomodulatory effects of L-theanine have received less attention. Clinical and epidemiological studies have shown that L-theanine reduces immunosuppression caused by strenuous exercise and prevents colds and influenza by improving immunity. Numerous cell and animal studies have proven that theanine plays an immunoregulatory role in inflammation, nerve damage, the intestinal tract, and tumors by regulating γδT lymphocyte function, glutathione (GSH) synthesis, and the secretion of cytokines and neurotransmitters. In addition, theanine can be used as an immunomodulator in animal production. This article reviews the research progress of L-theanine on immunoregulation and related mechanisms, as well as its application in poultry and animal husbandry. It is hoped that this work will be beneficial to future related research.
Asunto(s)
Citocinas , Glutamatos , Animales , Glutamatos/química , Inmunidad , Té/químicaRESUMEN
As major regulators on bone formation/resorption in response to mechanical stimuli, osteocytes have shown great promise for restoring bone injury. However, due to the unmanageable and unabiding cell functions in unloading or diseased environments, the efficacy of osteogenic induction by osteocytes has been enormously limited. Herein, a facile method of oscillating fluid flow (OFF) loading for cell culture is reported, which enables osteocytes to initiate only osteogenesis and not the osteolysis process. After OFF loading, multiple and sufficient soluble mediators are produced in osteocytes, and the collected osteocyte lysates invariably induce robust osteoblastic differentiation and proliferation while restraining osteoclast generation and activity under unloading or pathological conditions. Mechanistic studies confirm that elevated glycolysis and activation of the ERK1/2 and Wnt/ß-catenin pathways are the major contributors to the initiation of osteoinduction functions induced by osteocytes. Moreover, an osteocyte lysate-based hydrogel is designed to establish a stockpile of "active osteocytes" to sustainably deliver bioactive proteins, resulting in accelerated healing through regulation of endogenous osteoblast/osteoclast homeostasis.
Asunto(s)
Resorción Ósea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteoclastos/patología , Osteocitos/metabolismo , Hidrogeles/metabolismo , Osteoblastos/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/patología , HomeostasisRESUMEN
Tight junction protein 1 (TJP1) is a recently identified prominent regulator of bladder cancer (BLCA) angiogenesis and tumorigenesis. Vascular mimicry (VM) is a newly described tumor feature and is correlated with an increased risk of tumor metastasis. However, the relationship between TJP1 expression and VM in bladder cancer remains elusive. In the present study, we report a novel function for TJP1 in accommodating VM to promote tumor progression. We found that the elevated TJP1 expression was positively related to VM in patients and xenograft tumor models in bladder cancer. Enforced expression of TJP1 increased VM of BLCA cells in vitro and in vivo by elevating Vascular endothelial growth factor A (VEGFA) levels. Furthermore, VM induced by TJP1 overexpression was significantly blocked by the VEGFA and VEGFR inhibitors (Bevacizumab and Sunitinib). Mechanistically, TJP1 promoted VEGFA transcriptional and protein level in a TWIST1-dependent manner. Taken together, our study reveals that TJP1-regulated VEGFA overexpression may indicate a potential therapeutic target for clinical intervention in the early tumor neovascularization of bladder cancer.
RESUMEN
Immune intervention of B cell activation to blockade the production of autoantibodies provokes intense interest in the field of systemic lupus erythematosus (SLE) therapy development. Although the survival rate for SLE is improved, many patients die untimely. Engineered cell membrane vesicles manifest remarkable capacity of targeted drug delivery and immunomodulation of immune cells such as B cells. Herein, this work engineered cellular nanovesicles (NVs) presenting CD40 (CD40 NVs) that can blunt B cells and thus alleviate SLE. CD40 NVs disrupt the CD40/CD40 ligand (CD40L) costimulatory signal axis through the blockade of CD40L on CD4+ T cells. Therefore, the CD40 NVs restrain the generation of the germinal center structure and production of antibodies from B cells. Furthermore, immunosuppressive drug mycophenolate mofetil (MMF) is also encapsulated in the vesicles (MMF-CD40 NVs), which is employed to deplete immunocytes including B cells, T cells, and dendritic cells. Together, CD40 NVs are promising formulations for relieving autoimmunity and lupus nephritis in MRL/lpr mice.
Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Ratones , Animales , Nefritis Lúpica/tratamiento farmacológico , Ligando de CD40/metabolismo , Ratones Endogámicos MRL lpr , Antígenos CD40/metabolismo , Lupus Eritematoso Sistémico/tratamiento farmacológico , Membrana Celular , Ácido MicofenólicoRESUMEN
Glucose-dependent insulinotropic polypeptide (GIP) is one of the important incretins and possesses lots of physiological activities such as stimulating insulin secretion and maintaining glucose homeostasis. The pentacyclic triterpenoid saponins are the major active ingredients in tea (Camellia sinensis) seeds. This study aimed to investigate the effect of tea seed saponins on the GIP secretion and related mechanisms. Our data showed that the total tea seed saponins (TSS, 65 mg/kg BW) and theasaponin E1 (TSE1, 2-4 µM) could increase the GIP mRNA and protein levels in mice and STC-1 cells. Phlorizin, the inhibitor of Sodium/glucose cotransporter 1 (SGLT1), reversed the TSE1-induced increase in Ca2+ and GIP mRNA level. In addition, TSE1 upregulated the protein expression of Takeda G protein-coupled receptor 5 (TGR5), and TGR5 siRNA significantly decreased GIP expression in TSE1-treated STC-1 cells. Network pharmacology analysis revealed that six proteins and five signaling pathways were associated with SGLT1, TGR5 and GIP regulated by TSE1. Taken together, tea seed saponins could stimulate GIP expression via SGLT1 and TGR5, and were promising natural active ingredients for improving metabolism and related diseases.
Asunto(s)
Camellia sinensis , Polipéptido Inhibidor Gástrico , Saponinas , Animales , Polipéptido Inhibidor Gástrico/metabolismo , Glucosa/metabolismo , Ratones , ARN Mensajero/genética , Receptores Acoplados a Proteínas G/genética , Saponinas/farmacología , Semillas/metabolismo , TéRESUMEN
The majority of oligodendrogliomas exhibit an intrinsic tendency to develop into malignant high-grade tumors. Angiogenesis is a major factor contributing to the malignant transformation of oligodendroglioma, and its molecular regulatory mechanism needs further study. We provide a case report of an oligodendroglioma patient with two recurrences whose disease progressed from WHO grade II to grade III. We showed that the expression of insulin gene enhancer protein (ISL2) and its angiogenic ability were positively correlated with the progression of oligodendroglioma. In Low-grade glioma (LGG) patients, including oligodendroglioma patients, overexpression of ISL2 was correlated with poor prognosis, and this correlation was not affected by gender or isocitrate dehydrogenase 1(IDH1) mutation status. ISL2 expression and ISL2-mediated angiogenic pathway activity are ideal biomarkers for the malignant transformation of oligodendroglioma. Anti-ISL2 therapy is also a potential treatment option for malignantly transformed oligodendroglioma.
RESUMEN
Triterpene saponins exhibit various biological and pharmacological activities. However, the knowledge on saponin biosynthesis in tea plants (Camellia sinensis L.) is still limited. In this work, tea flower and seed samples at different developmental stages and leaves were collected and analyzed with UPLC-PDA-MS and RNA sequencing for saponin determination and transcriptome comparison. The saponin content reached around 19% in the freshly mature seeds and 7% in the green flower buds, and decreased with the fruit ripeness and flower blooming. Almost no saponins were detected in leaf samples. PCA and KEGG analysis suggested that the gene expression pattern and secondary metabolism in TF1 and TS2 vs. leaf samples were significantly different. Weighted gene coexpression network analysis (WGCNA) uncovered two modules related to saponin content. The mevalonate (MVA) instead of 2-C-methyl-d-erythritol-4-phospate (MEP) pathway was responsible for saponin accumulation in tea plants, and 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS), diphosphomevalonate decarboxylase (MVD) and isopentenyl diphosphate isomerase (IDI) may be the key enzymes involved in saponin biosynthesis in tea seeds and flowers. Moreover, ten transcription factors (TFs) were predicted to regulate saponin biosynthesis in the tea plant. Taken together, our study provides a global insight into the saponin biosynthesis and accumulation in the tea plant.
RESUMEN
Black tea exhibits potential to improve hyperglycemia and insulin resistance, where theaflavins (TFs) are its characteristic components. The aim of this study was to explore the anti-diabetic mechanism of TFs. High-fat diet and streptozotocin-induced type 2 diabetes (T2D) mice were administered with TFs by gavage daily for 5 weeks. The biochemical analysis suggested that TFs possess potential anti-diabetic activity, which is comparable to that of metformin. RNA-sequencing analysis showed that TFs had a significant influence on the hepatic transcriptional profile of the T2D mice. The nine significantly enriched KEGG pathways were mainly associated with pancreatic secretion, digestion and metabolism of fat, protein and glycerolipid, and tight junctions. Quantitative real-time PCR and immunohistochemistry analysis verified that TFs improved pancreas function and intestine tight junction, with an increase in the expression of carboxyl ester lipase (Cel), chymotrypsinogen B (Ctrb1), pancreatic triglyceride lipase (Pnlip) and chymotrypsin-like elastase 3B (Cela3b) in the pancreas and cingulin and claudin-1 in the intestine. TFs improved mitochondrial biogenesis with the downregulation of peroxisome proliferator-activated receptor coactivator (PGC) 1α and 1ß in the liver, but had less effect on the muscle. This work revealed the comprehensive mechanism of TFs against T2D, suggesting that TFs are a potential natural agent for improving type 2 diabetes.
Asunto(s)
Antioxidantes/uso terapéutico , Biflavonoides/uso terapéutico , Catequina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Té , Animales , Antioxidantes/farmacología , Biflavonoides/farmacología , Glucemia , Catequina/farmacología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , EstreptozocinaRESUMEN
Two major green leaf volatiles (GLVs) in tea that contribute greatly to tea aroma, particularly the green odor, are (E)-2-hexenal and (Z)-3-hexenal. Until now, their formation and related mechanisms during tea manufacture have remained unclear. Our data showed that the contents of (E)-2-hexenal and (Z)-3-hexenal increased more than 1000-fold after live tea leaves were torn. Subsequently, a new (Z)-3:(E)-2-hexenal isomerase (CsHI) was identified in Camellia sinensis. CsHI irreversibly catalyzed the conversion of (Z)-3-hexenal to (E)-2-hexenal. Abiotic stresses including low temperature, dehydration, and mechanical wounding, did not influence the (E)-2-hexenal content in intact tea leaves during withering, but regulated the proportions of (Z)-3-hexenal and (E)-2-hexenal in torn leaves by modulating CsHI at the transcript level. For the first time, this work reveals the formation of (E)-2-hexenal during tea processing and suggests that CsHI may play a pivotal role in tea flavor development as well as in plant defense against abiotic stresses.
Asunto(s)
Camellia sinensis , Aldehídos , Isomerasas , Hojas de la Planta , TéRESUMEN
Bladder cancer (BLCA) is the most common malignant tumor of the urinary system and is characterized by high metastatic rates and poor prognosis. The expression of tight junction protein 1 (TJP1) is associated with bladder cancer invasion; however, the mechanism by which TJP1 affects vasculature remodeling remains unknown. In this study, we found that TJP1 expression correlated with tumor angiogenesis and poor overall survival in clinical samples. Furthermore, TJP1 overexpression promoted tumor angiogenesis in BLCA cells and stimulated recruitment of macrophages to tumors by upregulating CCL2 expression. Mechanistically, TJP1 interacted with TWIST1 and enhanced the transcriptional activity of CCL2. The impairment of tumor angiogenesis caused by knockdown of TJP1 was dramatically rescued by overexpression of TWIST1. Furthermore, TJP1 recruited USP2, which deubiquitinated TWIST1, thereby protecting TWIST1 from proteasome-mediated protein degradation. In conclusion, our results suggest that TJP1 controls angiogenesis in BLCA via TWIST1-dependent regulation of CCL2. We demonstrate that TJP1 functions as a scaffold for the interaction between USP2 and TWIST1 and this may provide potential therapeutic targets in bladder cancer.
Asunto(s)
Ubiquitina Tiolesterasa/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Proteína de la Zonula Occludens-1/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Desnudos , Transfección , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
Colorectal cancer (CRC) is the third most malignant tumour worldwide, with high mortality and recurrence. Chemoresistance is one of the main factors leading to metastasis and poor prognosis in advanced CRC patients. By analysing the Gene Expression Omnibus data set, we found higher hexokinase 2 (HK2) expression levels in patients with metastatic CRC than in those with primary CRC. Moreover, we observed higher enrichment in oxaliplatin resistance-related gene sets in metastatic CRC than in primary CRC. However, the underlying relationship has not yet been elucidated. In our study, HK2 expression was significantly elevated in CRC patients. Gene set enrichment analysis (GSEA) revealed multi-drug resistance and epithelial-mesenchymal transition (EMT) pathways related to high HK2 expression. Our results showed that knockdown of HK2 significantly inhibited vimentin and Twist1 expression and promoted TJP1 and E-cadherin expression in CRC cells. Additionally, transcriptional and enzymatic inhibition of HK2 by 3-bromopyruvate (3-bp) impaired oxaliplatin resistance in vitro and in vivo. Mechanistically, HK2 interacts with and stabilized Twist1 by preventing its ubiquitin-mediated degradation, which is related to oxaliplatin resistance, in CRC cells. Overexpression of Twist1 reduced the apoptosis rate by HK2 knockdown in CRC cells. Collectively, we discovered that HK2 is a crucial regulator that mediates oxaliplatin resistance through Twist1. These findings identify HK2 and Twist1 as promising drug targets for CRC chemoresistance.
Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Hexoquinasa/metabolismo , Proteínas Nucleares/metabolismo , Oxaliplatino/farmacología , Proteína 1 Relacionada con Twist/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB CRESUMEN
The molecular alterations that initiate the development of multiple myeloma (MM) are not fully understood. Our results revealed that TJP1 was downregulated in MM and positively related to the overall survival of MM patients in The Cancer Genome Atlas (TCGA) database and patient samples. In parallel, cell adhesion capacity representing MM metastasis was decreased in MM patients compared with healthy samples, together with the significantly activated epithelial-to-mesenchymal transition (EMT) transcriptional-like patterns of MM cells. Further analyses demonstrated that TJP1 negatively regulated EMT and consequently positively regulated cell adhesion in MM from TCGA database and MM1s cells. Furthermore, the methylation level of each CpG site on the TJP1 promoter was negatively correlated with TJP1 expression levels. Quantitative real-time PCR and western blot assays demonstrated that methylase DNMT1 regulated the methylation of TJP1. Finally, treatment with a combination of the MM clinical medicine bortezomib, methylation inhibitor, or TJP1 overexpression significantly suppressed the viability and progression of tumor cells of MM orthotopic models. In summary, our results indicate that DNMT1 promotes the methylation of TJP1 promoter, thereby decreasing its expression and regulating the development of EMT-inhibited MM cell adhesion. Therefore, methylation of TJP1 is a potential therapeutic agent to prevent the progression of MM disease.
RESUMEN
Oligodendroglioma is an important type of lower-grade glioma (LGG), which is a slowly progressing brain tumor. Many LGGs eventually transform into a more aggressive or malignant type. Enhanced angiogenesis is a characteristic of malignantly transformed oligodendroglioma (m-oligodendroglioma). However, the pathogenesis and signaling pathways associated with angiogenesis and proliferation in m-oligodendroglioma are not well understood. In this study, we identified that Insulin Gene Enhancer Protein (ISL2) and its angiogenic capacity were inversely related to survival according to LGG patient data from an online database, and this was further confirmed with pathological LGG patient samples, including malignantly transformed samples, by detecting the expression of ISL2, the angiogenic markers vascular endothelial growth factor (VEGFA) and CD31 and the proliferation marker Ki-67. We then established novel oligodendroglioma patient tumor-derived orthotopic xenograft mouse models and cell lines to verify the role of ISL2 in regulating angiogenesis to promote oligodendroglioma growth and malignant transformation. Furthermore, ISL2 regulated ANGPT2 transcription by binding to the ANGPT2 promoter. Then, ANGPT2, a downstream gene, activated angiogenesis through VEGFA to promote oligodendroglioma malignant transformation. Finally, combining AAV-ISL2-shRNA with temozolomide suppressed oligodendroglioma progression more effectively than either monotherapy in vivo and in vitro. Thus, hypoxia-induced ISL2 regulated ANGPT2, which subsequently induced angiogenesis to promote oligodendroglioma growth and malignant transformation. Malignancy was accompanied by worsened hypoxia inside the tumor mass, creating a positive feedback loop. In conclusion, this study suggests that ISL2 is a biomarker for oligodendroglioma progression and that anti-ISL2 therapy may offer a potential clinical strategy for treating m-oligodendroglioma.