Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003065

RESUMEN

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Asunto(s)
Antibacterianos , Ganado , Estiércol , Microbiología del Suelo , Animales , Suelo/química , Secuestro de Carbono , Carbono/metabolismo , Fósforo , Reciclaje , Contaminantes del Suelo/metabolismo , Bovinos , Porcinos , Nitrógeno/análisis , Oxitetraciclina
2.
Food Res Int ; 193: 114855, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160046

RESUMEN

Pepper (Capsicum spp.) is an important fruit vegetable worldwide, and it is a rich dietary source of minerals for human being. Yet, the spatio-temporal distribution of pepper fruit mineral composition and the factors influencing such variations at global scale remain unknown. A global meta-analysis of 140 publications providing 649, 562, 690, 811 datapoints was conducted to quantify and evaluate the nutritional quality, comprising potassium (K), magnesium (Mg), iron (Fe) and zinc (Zn), of pepper fruits and its influencing variables. The analysis showed that the global average of K, Mg, Fe and Zn content in pepper fruits was 20-25 g kg-1, 1-1.5 g kg-1, 80-100 mg kg-1, and 20-40 mg kg-1, respectively. There had been a downward trend in pepper fruit nutritional quality over the last decade, especially for Fe and Zn. And, the concentration of all these four nutrients were at lower levels in less developed regions, especially in Africa. Our results showed that the vegetable "green pepper" contains more K, Mg, Fe and Zn than the "hot pepper" used as spice. The concentration of K, Mg, Fe and Zn were increased with fruit yield but that of Fe and Zn were decreased with increase in single fruit weight. Nutritional quality was optimal at mean annual temperature of 10 ℃ - 20 ℃, and was adversely affected when mean annual precipitation was < 500 mm. Pepper fruits produced at pH 6.5-7.5 had higher fruit K concentration while acidic soils (pH<6.5) favored higher Fe and Zn concentrations. The higher soil organic matter (SOM) generally improved the nutritional quality of the pepper. Our results suggest that systematic selection of superior varieties and soil amelioration (adjusting pH and SOM) of the soil-crop system are needed to achieve higher nutritional quality of pepper fruit.


Asunto(s)
Capsicum , Frutas , Valor Nutritivo , Capsicum/química , Frutas/química , Minerales/análisis , Análisis Espacio-Temporal , Potasio/análisis , Magnesio/análisis , Zinc/análisis , Hierro/análisis
3.
Int Immunopharmacol ; 141: 112995, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39191121

RESUMEN

Zymogen granule 16 (ZG16) is a secretory glycoprotein found in zymogen granules, which also plays an important role in colorectal inflammation and cancer. Herein, a ZG16 gene knock-out (ZG16-/-) mouse line was established and we found that ZG16 deletion damaged the intestinal mucosal barrier and gut microbiota, which resulted in low-level inflammation and further promoted the development of ulcerative colitis and inflammation-related colorectal cancer. Meanwhile, a metabolomics analysis on mouse feces showed that the metabolites significantly differed between ZG16-/- and WT mice, which were important mediators of host-microbiota communication and may impact the pulmonary inflammation of mice. Indeed, ZG16-/- mice showed more severe inflammation in a bronchial asthma model. Taken together, the results demonstrate that ZG16 plays a pivotal role in inhibiting inflammation and regulating immune responses in colorectum and lung of experimental animals, which may provide a better understanding of the underlying mechanism of human inflammatory diseases associated with ZG16.

4.
New Phytol ; 243(5): 1936-1950, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38973063

RESUMEN

The antagonistic interplay between phosphorus (P) and zinc (Zn) in plants is well established. However, the molecular mechanisms mediating those interactions as influenced by arbuscular mycorrhizal (AM) symbiosis remain unclear. We investigated Zn concentrations, root AM symbiosis, and transcriptome profiles of maize roots grown under field conditions upon different P levels. We also validated genotype-dependent P-Zn uptake in selected genotypes from a MAGIC population and conducted mycorrhizal inoculation experiments using mycorrhizal-defective mutant pht1;6 to elucidate the significance of AM symbiosis in P-Zn antagonism. Finally, we assessed how P supply affects Zn transporters and Zn uptake in extraradical hyphae within a three-compartment system. Elevated P levels led to a significant reduction in maize Zn concentration across the population, correlating with a marked decline in AM symbiosis, thus elucidating the P-Zn antagonism. We also identified ZmPht1;6 is crucial for AM symbiosis and confirmed that P-Zn antagonistic uptake is dependent on AM symbiosis. Moreover, we found that high P suppressed the expression of the fungal RiZRT1 and RiZnT1 genes, potentially impacting hyphal Zn uptake. We conclude that high P exerts systemic regulation over root and AM hyphae-mediated Zn uptake in maize. These findings hold implications for breeding Zn deficiency-tolerant maize varieties.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Micorrizas , Fósforo , Suelo , Simbiosis , Zea mays , Zinc , Zea mays/microbiología , Zea mays/metabolismo , Zea mays/genética , Micorrizas/fisiología , Zinc/metabolismo , Fósforo/metabolismo , Suelo/química , Transporte Biológico , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hifa , Genotipo , Mutación/genética
5.
Biochem Pharmacol ; 227: 116440, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029631

RESUMEN

Gastric ulcer is a highly prevalent digestive tract disease across the world, which is recurrent and hard to cure, sometimes transforming into gastric cancer if left untreated, posing great threat to human health. To develop new medicines for gastric ulcer, we ran a series of screens with ethanol stress model in GES-1 cells, and we uncovered that lamivudine rescued cells from ethanol toxicity. Then, we confirmed this discovery using the well-established ethanol-induced gastric ulcer model in mice and our findings suggest that lamivudine can directly activate phosphoglycerate kinase 1 (PGK1, EC 2.7.2.3), which binds and stimulates superoxide dismutase 1 (SOD1, EC 1.15.1.1) to inhibit ferroptosis and ultimately improve gastric ulcer. Moreover, AAV-PGK1 exhibited comparable gastroprotective effects to lamivudine. The findings are expected to offer novel therapeutic strategies for gastric ulcer, encompassing both lamivudine and AAV-PGK1.


Asunto(s)
Ferroptosis , Lamivudine , Ratones Endogámicos C57BL , Fosfoglicerato Quinasa , Úlcera Gástrica , Animales , Úlcera Gástrica/prevención & control , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patología , Ratones , Fosfoglicerato Quinasa/metabolismo , Fosfoglicerato Quinasa/genética , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Humanos , Lamivudine/farmacología , Masculino , Etanol , Línea Celular , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/genética
6.
J Hazard Mater ; 476: 135232, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39024768

RESUMEN

Plant-beneficial bacteria (PBB) have emerged as a promising approach for assisting phytoremediation of heavy metal (HM)-contaminated soils. However, their colonization efficiency is often challenged by complex soil environments. In this study, we screened one rhizobacterium (Klebsiella variicola Y38) and one endophytic bacterium (Serratia surfactantfaciens Y15) isolated from HM-contaminated soils and plants for their high resistance to Cd and strong growth-promoting abilities. These strains were encapsulated individually or in combination with alginate and applied with Medicago sativa in Cd-contaminated soil pot experiments. The effectiveness of different bacterial formulations in promoting plant growth and enhancing Cd bioconcentration in M. sativa was evaluated. Results showed that PBB application enhanced plant growth and antioxidant capacity while reducing oxidative damage. Encapsulated formulations outperformed unencapsulated ones, with combined formulations yielding superior results to individual applications. Quantitative PCR indicated enhanced PBB colonization in Cd-contaminated soils with alginate encapsulation, potentially explaining the higher efficacy of alginate-encapsulated PBB. Additionally, the bacterial agents modified Cd speciation in soils, resulting in increased Cd bioaccumulation in M. sativa by 217-337 %. The alginate-encapsulated mixed bacterial agent demonstrated optimal effectiveness, increasing the Cd transfer coefficient by 3.2-fold. Structural equation modeling and correlation analysis elucidated that K. variicola Y38 promoted Cd bioaccumulation in M. sativa roots by reducing oxidative damage and enhancing root growth, while S. surfactantfaciens Y15 facilitated Cd translocation to shoots, promoting shoot growth. The combined application of these bacteria leveraged the benefits of both strains. These findings contribute to diversifying strategies for effectively and sustainably remediating Cd-contaminated soils, while laying a foundation for future investigations into bacteria-assisted phytoremediation.


Asunto(s)
Biodegradación Ambiental , Cadmio , Medicago sativa , Contaminantes del Suelo , Cadmio/metabolismo , Medicago sativa/metabolismo , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Alginatos/química , Bioacumulación , Bacterias/metabolismo , Bacterias/efectos de los fármacos
7.
Noncoding RNA Res ; 9(4): 1120-1132, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39022687

RESUMEN

Long non-coding RNA (lncRNA) H19 is an extensively studied lncRNA that is related to numerous pathological changes. Our previous findings have documented that serum lncRNA H19 levels are decreased in patients with chronic kidney disorder and lncRNA H19 reduction is closely correlated with renal tubulointerstitial fibrosis, an essential step in developing end-stage kidney disease. Nonetheless, the precise function and mechanism of lncRNA H19 in renal tubulointerstitial fibrosis are not fully comprehended. The present work utilized a mouse model of unilateral ureteral obstruction (UUO) and transforming growth factor-ß1 (TGF-ß1)-stimulated HK-2 cells to investigate the possible role and mechanism of lncRNA H19 in renal tubulointerstitial fibrosis were investigated. Levels of lncRNA H19 decreased in kidneys of mice with UUO and HK-2 cells stimulated with TGF-ß1. Up-regulation of lncRNA H19 in mouse kidneys remarkably relieved kidney injury, fibrosis and inflammation triggered by UUO. Moreover, the increase of lncRNA H19 in HK-2 cells reduced epithelial-to-mesenchymal transition (EMT) induced by TGF-ß1. Notably, up-regulation of lncRNA H19 reduced lipid accumulation and triacylglycerol content in kidneys of mice with UUO and TGF-ß1-stimulated HK-2 cells, accompanied by the up-regulation of long-chain acyl-CoA synthetase 1 (ACSL1). lncRNA H19 was identified as a sponge of microRNA-130a-3p, through which lncRNA H19 modulates the expression of ACSL1. The overexpression of microRNA-130a-3p reversed the lncRNA H19-induced increases in the expression of ACSL1. The suppressive effects of lncRNA H19 overexpression on the EMT, inflammation and lipid accumulation in HK-2 cells were diminished by ACSL1 silencing or microRNA-130a-3p overexpression. Overall, the findings showed that lncRNA H19 ameliorated renal tubulointerstitial fibrosis by reducing lipid deposition via modulation of the microRNA-130a-3p/ACSL1 axis.

8.
ACS Appl Mater Interfaces ; 16(28): 37288-37297, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953553

RESUMEN

The incompatibility of ether electrolytes with a cathode dramatically limits its application in high-voltage Li metal batteries. Herein, we report a new highly concentrated binary salt ether-based electrolyte (HCBE, 1.25 M LiTFSI + 2.5 M LiFSI in DME) that enables stable cycling of high-voltage lithium metal batteries with the Ni-rich (NCM83, LiNi0.83Co0.12Mn0.05O2) cathode. Experimental characterizations and density functional theory (DFT) calculations reveal the special solvation structure in HCBE. A solvation structure rich in aggregates (AGGs) can effectively broaden the electrochemical window of the ether electrolyte. The anions in HCBE preferentially decompose under high voltage, forming a CEI film rich in inorganic components to protect the electrolyte from degradation. Thus, the high-energy-density Li||NCM83 cell has a capacity retention of ≈95% after 150 cycles. Significantly, the cells in HCBE have a high and stable average Coulombic efficiency of over 99.9%, much larger than that of 1 M LiPF6 + EC + EMC + DMC (99%). The result emphasizes that the anionic-driven formation of a cathode electrolyte interface (CEI) can reduce the number of interface side reactions and effectively protect the cathode. Furthermore, the Coulombic efficiency of Li||Cu using the HCBE is 98.5%, underscoring the advantages of using ether-based electrolytes. This work offers novel insights and approaches for the design of high-performance electrolytes for lithium metal batteries.

9.
Int Urol Nephrol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982020

RESUMEN

Chronic kidney disease has emerged as a major health issue both in China and worldwide. Renal anemia frequently occurs in patients with chronic kidney disease, and its severity and incidence rate increase as the disease progresses. Over the last 30 years, the administration of exogenous EPO and EPO stimulants has been employed to alleviate renal anemia, suggesting that a relative deficiency in EPO may be a primary cause. However, this approach has overshadowed other contributing factors, particularly eryptosis, which results from the reduced lifespan of red blood cells. Numerous studies reveal that there are nephrogenic and extrarenal EPO secretion indicating that an absolute deficiency of EPO is not always present in patients. Therefore, this paper speculates that renal anemia may arise when EPO-driven erythropoiesis fails to adequately compensate for aggravating eryptosis. Other factors including iron metabolism disorder, uremic toxin accumulation, inflammatory state, oxidative stress, and secondary hyperparathyroidism affect EPO reactivity bone marrow hematopoiesis and eryptosis, leading to an imbalance between red blood cell production and destruction, and cause anemia ultimately. More further studies on the pathogenesis and treatment of renal anemia would be expected to provide evidence to support our opinion.

10.
Nat Commun ; 15(1): 5866, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997249

RESUMEN

The estuarine plastisphere, a novel ecological habitat in the Anthropocene, has garnered global concerns. Recent geochemical evidence has pointed out its potential role in influencing nitrogen biogeochemistry. However, the biogeochemical significance of the plastisphere and its mechanisms regulating nitrogen cycling remain elusive. Using 15N- and 13C-labelling coupled with metagenomics and metatranscriptomics, here we unveil that the plastisphere likely acts as an underappreciated nitrifying niche in estuarine ecosystems, exhibiting a 0.9 ~ 12-fold higher activity of bacteria-mediated nitrification compared to surrounding seawater and other biofilms (stone, wood and glass biofilms). The shift of active nitrifiers from O2-sensitive nitrifiers in the seawater to nitrifiers with versatile metabolisms in the plastisphere, combined with the potential interspecific cooperation of nitrifying substrate exchange observed among the plastisphere nitrifiers, collectively results in the unique nitrifying niche. Our findings highlight the plastisphere as an emerging nitrifying niche in estuarine environment, and deepen the mechanistic understanding of its contribution to marine biogeochemistry.


Asunto(s)
Bacterias , Biopelículas , Estuarios , Nitrificación , Agua de Mar , Agua de Mar/microbiología , Bacterias/metabolismo , Bacterias/genética , Biopelículas/crecimiento & desarrollo , Ecosistema , Microbiota/fisiología , Metagenómica , Filogenia , Ciclo del Nitrógeno , Nitrógeno/metabolismo , Isótopos de Nitrógeno/metabolismo
11.
Nat Food ; 5(6): 499-512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849568

RESUMEN

The contribution of crop and livestock production to the exceedance of the planetary boundary for phosphorus (P) in China is still unclear, despite the country's well-known issues with P fertilizer overuse and P-related water pollution. Using coupled models at sub-basin scales we estimate that livestock production increased the consumption of P fertilizer fivefold and exacerbated P losses twofold from 1980 to 2017. At present, China's crop-livestock system is responsible for exceeding what is considered a 'just' threshold for fertilizer P use by 30% (ranging from 17% to 68%) and a 'safe' water quality threshold by 45% (ranging from 31% to 74%) in 25 sub-basins in China. Improving the crop-livestock system will keep all sub-basins within safe water quality and just multigenerational limits for P in 2050.


Asunto(s)
Productos Agrícolas , Fertilizantes , Fósforo , Fósforo/análisis , China , Productos Agrícolas/crecimiento & desarrollo , Animales , Fertilizantes/análisis , Ganado , Agricultura/métodos , Calidad del Agua
12.
Front Plant Sci ; 15: 1351301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855462

RESUMEN

Introduction: The micronutrient deficiency of iron and boron is a common issue affecting the growth of rapeseed (Brassica napus). In this study, a non-destructive diagnosis method for iron and boron deficiency in Brassica napus (genotype: Zhongshuang 11) using hyperspectral imaging technology was established. Methods: The recognition accuracy was compared using the Fisher Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) recognition models. Recognition results showed that Multiple Scattering Correction (MSC) could be applied for the full band hyperspectral data processing, while the LDA models presented better performance on establishing the leaf iron and boron deficiency symptom recognition than the SVM models. Results: The recognition accuracy of the training set reached 96.67%, and the recognition rate of the prediction set could be 91.67%. To improve the model accuracy, the Competitive Adaptive Reweighted Sampling algorithm (CARS) was added to construct the MSC-CARS-LDA model. 33 featured wavelengths were selected via CARS. The recognition accuracy of the MSC-CARS-LDA training set was 100%, while the recognition accuracy of the MSC-CARS-LDA prediction set was 95.00%. Discussion: This study indicates that, it is capable to identify the iron and boron deficiency in rapeseed using hyperspectral imaging technology.

13.
Nat Genet ; 56(6): 1245-1256, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778242

RESUMEN

The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.


Asunto(s)
Adaptación Fisiológica , Domesticación , Sequías , Raíces de Plantas , Plantones , Agua , Zea mays , Zea mays/genética , Zea mays/fisiología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Adaptación Fisiológica/genética , Plantones/genética , Agua/metabolismo , Mapeo Cromosómico , Fenotipo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
ACS Appl Mater Interfaces ; 16(21): 27429-27438, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747425

RESUMEN

Lithium metal batteries (LMBs) combined with a high-voltage nickel-rich cathode show great potential in meeting the growing need for high energy density. The lack of advanced electrolytes has been a major obstacle in the commercialization of high-voltage lithium metal batteries (LMBs), as these electrolytes need to effectively support both a stable lithium metal anode (LMA) and a high-voltage cathode (>4 V vs Li+/Li). In this work, by extending the two terminal methyl groups in DIGDME and TEGDME to n-butyl groups, we design a new weakly solvating electrolyte (2 M LIFSI+TEGDBE) that enables the stable cycling of NMC83 (LiNi0.83Co0.12Mn0.05O2) cathodes. The NMC83 cell exhibits a high and stable Coulombic efficiency (CE) of over 99%, as well as capacity retention of approximately 99.8% after 100 cycles at 0.3 C. X-ray photoelectron spectroscopy analysis (XPS) and high-resolution transmission electron microscope (HRTEM) images revealed that the anion species decomposed first, resulting in the formation of a cathode-electrolyte interface (CEI) film predominantly consisting of decomposition products from the anions on the positive electrode surface. This work links the functional group of solvents with the solvation structure and electrochemical performance of ether-based electrolytes, providing a distinctive sight to design advanced electrolytes for high-energy-density LMBs.

15.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760744

RESUMEN

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Asunto(s)
Diferenciación Celular , Histona Desacetilasas , Células Madre Mesenquimatosas , Nanopartículas , Animales , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Diferenciación Celular/efectos de los fármacos , Histona Desacetilasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Masculino , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Núcleo Celular/metabolismo , Curación de Fractura/efectos de los fármacos , Humanos , Proteínas de la Membrana
16.
Sci Rep ; 14(1): 10061, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698017

RESUMEN

Accurate prediction of remaining useful life (RUL) for aircraft engines is essential for proactive maintenance and safety assurance. However, existing methods such as physics-based models, classical recurrent neural networks, and convolutional neural networks face limitations in capturing long-term dependencies and modeling complex degradation patterns. In this study, we propose a novel deep-learning model based on the Transformer architecture to address these limitations. Specifically, to address the issue of insensitivity to local context in the attention mechanism employed by the Transformer encoder, we introduce a position-sensitive self-attention (PSA) unit to enhance the model's ability to incorporate local context by attending to the positional relationships of the input data at each time step. Additionally, a gated hierarchical long short-term memory network (GHLSTM) is designed to perform regression prediction at different time scales on the latent features, thereby improving the accuracy of RUL estimation for mechanical equipment. Experiments on the C-MAPSS dataset demonstrate that the proposed model outperforms existing methods in RUL prediction, showcasing its effectiveness in modeling complex degradation patterns and long-term dependencies.

17.
Glob Chang Biol ; 30(5): e17311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742695

RESUMEN

The soil microbial carbon pump (MCP) is increasingly acknowledged as being directly linked to soil organic carbon (SOC) accumulation and stability. Given the close coupling of carbon (C) and nitrogen (N) cycles and the constraints imposed by their stoichiometry on microbial growth, N addition might affect microbial growth strategies with potential consequences for necromass formation and carbon stability. However, this topic remains largely unexplored. Based on two multi-level N fertilizer experiments over 10 years in two soils with contrasting soil fertility located in the North (Cambisol, carbon-poor) and Southwest (Luvisol, carbon-rich), we hypothesized that different resource demands of microorganism elicit a trade-off in microbial growth potential (Y-strategy) and resource-acquisition (A-strategy) in response to N addition, and consequently on necromass formation and soil carbon stability. We combined measurements of necromass metrics (MCP efficacy) and soil carbon stability (chemical composition and mineral associated organic carbon) with potential changes in microbial life history strategies (assessed via soil metagenomes and enzymatic activity analyses). The contribution of microbial necromass to SOC decreased with N addition in the Cambisol, but increased in the Luvisol. Soil microbial life strategies displayed two distinct responses in two soils after N amendment: shift toward A-strategy (Cambisol) or Y-strategy (Luvisol). These divergent responses are owing to the stoichiometric imbalance between microbial demands and resource availability for C and N, which presented very distinct patterns in the two soils. The partial correlation analysis further confirmed that high N addition aggravated stoichiometric carbon demand, shifting the microbial community strategy toward resource-acquisition which reduced carbon stability in Cambisol. In contrast, the microbial Y-strategy had the positive direct effect on MCP efficacy in Luvisol, which greatly enhanced carbon stability. Such findings provide mechanistic insights into the stoichiometric regulation of MCP efficacy, and how this is mediated by site-specific trade-offs in microbial life strategies, which contribute to improving our comprehension of soil microbial C sequestration and potential optimization of agricultural N management.


Asunto(s)
Carbono , Fertilizantes , Nitrógeno , Microbiología del Suelo , Suelo , Suelo/química , Carbono/metabolismo , Carbono/análisis , Nitrógeno/metabolismo , Nitrógeno/análisis , Fertilizantes/análisis , Ciclo del Carbono , Microbiota
18.
Sci Total Environ ; 926: 172128, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38565350

RESUMEN

The threat of heavy metal (HM) pollution looms large over plant growth and human health, with tobacco emerging as a highly vulnerable plant due to its exceptional absorption capacity. The widespread cultivation of tobacco intensifies these concerns, posing increased risks to human health as HMs become more pervasive in tobacco-growing soils globally. The absorption of these metals not only impedes tobacco growth and quality but also amplifies health hazards through smoking. Implementing proactive strategies to minimize HM absorption in tobacco is of paramount importance. Various approaches, encompassing chemical immobilization, transgenic modification, agronomic adjustments, and microbial interventions, have proven effective in curbing HM accumulation and mitigating associated adverse effects. However, a comprehensive review elucidating these control strategies and their mechanisms remains notably absent. This paper seeks to fill this void by examining the deleterious effects of HM exposure on tobacco plants and human health through tobacco consumption. Additionally, it provides a thorough exploration of the mechanisms responsible for reducing HM content in tobacco. The review consolidates and synthesizes recent domestic and international initiatives aimed at mitigating HM content in tobacco, delivering a comprehensive overview of their current status, benefits, and limitations.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Nicotiana , Metales Pesados/análisis , Plantas , Contaminación Ambiental/análisis , Suelo/química , Contaminantes del Suelo/análisis
19.
J Agric Food Chem ; 72(11): 6040-6052, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38454851

RESUMEN

One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and ß-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.


Asunto(s)
Calostro , Glicoproteínas , Leche , Femenino , Embarazo , Lactante , Humanos , Animales , Calostro/metabolismo , Perilipina-2/metabolismo , Leche/metabolismo , Glucolípidos/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Leche/metabolismo , Caseínas/metabolismo
20.
ACS Nano ; 18(11): 8350-8359, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38465598

RESUMEN

The low ionic conductivities of aprotic electrolytes hinder the development of extreme fast charging technologies and applications at low temperatures for lithium-ion batteries (LIBs). Herein, we present an electrolyte with LiFSI in acetone (DMK). In DMK electrolytes, the solvation number is three, and solvent-separated ion pairs (SSIPs) are the dominant structure, which is largely different from other linear aprotic electrolytes where salts primarily exist as contact ion pairs (CIPs). With incompact solvation structures due to the weak solvation ability of DMK with Li+, the ionic conductivity reaches 45 mS/cm at room temperature. The percentage of SSIPs increases as temperatures decrease in DMK electrolytes, which is totally different from the carbonate-based electrolytes but greatly beneficial to low-temperature ionic conductivity. With the appropriate addition of VC and FEC, DMK-based electrolytes still exhibit a superhigh ionic conductivity. Even at -40 °C, the ionic conductivity is greater than 10 mS/cm. With DMK-based electrolytes, LIBs with thick LiFePO4 electrodes can be cycled at high rates and at low temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA