Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 260: 119621, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019142

RESUMEN

Atom-dispersed low-coordinated transition metal-Nx catalysts exhibit excellent efficiency in activating peroxydisulfate (PDS) for environmental remediation. However, their catalytic performance is limited due to metal-N coordination number and single-atom loading amount. In this study, low-coordinated nitrogen-doped graphene oxide (GO) confined single-atom Mn catalyst (Mn-SA/NGO) was synthesized by molten salt-assisted pyrolysis and coupled to PDS for degradation of tetracycline (TC) in water. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analysis showed the successful doping of single-atom Mn (weight percentage 1.6%) onto GO and the formation of low-coordinated Mn-N2 sites. The optimized parameters obtained by Box-Behnken Design achieved 100% TC removal in both prediction and experimental results. The Mn-SA/NGO + PDS system had strong anti-interference ability for TC removal in the presence of anions. Besides, Mn-SA/NGO possessed good reusability and stability. O2•-, •OH, and 1O2 were the main active species for TC degradation, and the TC mineralization reached 85.1%. Density functional theory (DFT) calculations confirmed that the introduction of single atoms Mn could effectively enhance adsorption and activation of PDS. The findings provide a reference for the synthesis of high-performance single-atom catalysts for effective removal of antibiotics.

2.
J Environ Radioact ; 273: 107393, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354571

RESUMEN

In this paper, the influence of an earthquake on radon exhalation rate of uranium tailings reservoir beach under high temperature environment is studied by using a self-made integrated simulation test device for natural disasters, and a scale model test based on similarity and dimensional laws. The results show that, (1)When the peak acceleration reaches 0.6g, the radon exhalation rate increases sharply with the increase of peak acceleration, and tends to be gentle after 1.0g. (2)Under the action of high temperature, the radon exhalation rate increases rapidly with the increase of high temperature time, and gradually becomes flat after the 4th hour. (3)Compared with loading the earthquake condition only, the coupling effect of high temperatures and earthquakes causes a greater degree of damage to the beach surface of a uranium tailings reservoir under the same acceleration conditions, and the fissure rate and radon exhalation rate of the beach surface are substantially increased.


Asunto(s)
Terremotos , Monitoreo de Radiación , Radón , Uranio , Radón/análisis , Temperatura , Uranio/análisis , Espiración , Monitoreo de Radiación/métodos
3.
J Environ Radioact ; 262: 107148, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36921389

RESUMEN

The radioactive index value of the leachate of the uranium tailings dam is affected by the internal damage of the dam. Therefore, a way of using the deviation of the radioactive index concentration in the leachate to warn the instability of the dam is innovatively proposed in this paper. Firstly, the SSA-BP algorithm is used to predict and analyze the five groups of parameters U, Ra, ∑ α, ∑ ß and Rn. Then, the deviation between the actual value and the predicted value is computed. Finally, an early warning is given based on the entropy weight extension decision-making model. The model is verified by the leachate environment monitoring data of a uranium tailings dam in southern China from 2016 to 2020, which shows that the model can effectively caution of the instability of the uranium tailings dam and provides a reference for the subsequent decommissioning management.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Uranio , Uranio/análisis , Agua , Contaminantes Radiactivos del Suelo/análisis , China
4.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35957132

RESUMEN

The development of novel catalysts for degrading organic contaminants in water is a current hot topic in photocatalysis research for environmental protection. In this study, C3N5 nanosheet/Ag2CO3 nanocomposites (CNAC-X) were used as efficient photocatalysts for the visible-light-driven degradation of methylene blue (MB), and tetracycline hydrochloride (TC-HCl) was synthesized for the first time using a simple thermal oxidative exfoliation and in situ deposition method. Due to the synergistic effect of nanosheet structures, carbon defects, and Z-scheme heterojunctions, CNAC-10 exhibited the highest photocatalytic activity, with photodegradation efficiencies of 96.5% and 97.6% for MB (60 mg/L) and TC-HCl (50 mg/L) within 90 and 100 min, respectively. The radical trapping experiments showed that ·O2- and h+ played major roles in the photocatalytic effect of the CNAC-10 system. Furthermore, intermediates in the photodegradation of MB and TC-HCl were investigated to determine possible mineralization pathways. The results indicated that C3N5 nanosheet/Ag2CO3 photocatalysts prepared in this work could provide an effective reference for the treatment of organic wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA