Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Virulence ; 15(1): 2350893, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38725096

RESUMEN

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.


Asunto(s)
Proteínas Bacterianas , Coxiella burnetii , Lisosomas , Fosfatidilinositol 3-Quinasas , Fosfatos de Fosfatidilinositol , Canales de Potencial de Receptor Transitorio , Vacuolas , Animales , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Coxiella burnetii/metabolismo , Coxiella burnetii/crecimiento & desarrollo , Coxiella burnetii/genética , Células HeLa , Interacciones Huésped-Patógeno , Lisosomas/metabolismo , Lisosomas/microbiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fiebre Q/microbiología , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Vacuolas/microbiología , Vacuolas/metabolismo
2.
Microbiol Spectr ; 12(4): e0369523, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38358243

RESUMEN

Rickettsia rickettsii (R. rickettsii), the causative agent of Rocky Mountain spotted fever (RMSF), is the most pathogenic member among Rickettsia spp. Previous studies have shown that tripartite motif-containing 56 (TRIM56) E3 ligase-induced ubiquitination of STING is important for cytosolic DNA sensing and type I interferon production to induce anti-DNA viral immunity, but whether it affects intracellular replication of R. rickettsii remains uncharacterized. Here, we investigated the effect of TRIM56 on HeLa and THP-1 cells infected with R. rickettsii. We found that the expression of TRIM56 was upregulated in the R. rickettsii-infected cells, and the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while R. rickettsii replication was enhanced in the TRIM56-silenced host cells with the reduced phosphorylation of IRF3 and STING and the increased production of interferon-ß. In addition, the mutation of the TRIM56 E3 ligase catalytic site impairs the inhibitory function against R. rickettsii in HeLa cells. Altogether, our study discovers that TRIM56 is a host restriction factor of R. rickettsii by regulating the cGAS-STING-mediated signaling pathway. This study gives new evidence for the role of TRIM56 in the innate immune response against intracellular bacterial infection and provides new therapeutic targets for RMSF. IMPORTANCE: Given that Rickettsia rickettsii (R. rickettsii) is the most pathogenic member within the Rickettsia genus and serves as the causative agent of Rocky Mountain spotted fever, there is a growing need to explore host targets. In this study, we examined the impact of host TRIM56 on R. rickettsii infection in HeLa and THP-1 cells. We observed a significant upregulation of TRIM56 expression in R. rickettsii-infected cells. Remarkably, the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while silencing TRIM56 enhanced bacterial replication accompanied by reduced phosphorylation of IRF3 and STING, along with increased interferon-ß production. Notably, the mutation of the TRIM56's E3 ligase catalytic site did not impede R. rickettsii replication in HeLa cells. Collectively, our findings provide novel insights into the role of TRIM56 as a host restriction factor against R. rickettsii through the modulation of the cGAS-STING signaling pathway.


Asunto(s)
Interferón Tipo I , Fiebre Maculosa de las Montañas Rocosas , Humanos , Rickettsia rickettsii/metabolismo , Células HeLa , Ubiquitina-Proteína Ligasas/genética , Interferón beta/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Motivos Tripartitos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA