Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 35(1): e2206828, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36308045

RESUMEN

Room-temperature sodium-sulfur (RT-Na/S) batteries possess high potential for grid-scale stationary energy storage due to their low cost and high energy density. However, the issues arising from the low S mass loading and poor cycling stability caused by the shuttle effect of polysulfides seriously limit their operating capacity and cycling capability. Herein, sulfur-doped graphene frameworks supporting atomically dispersed 2H-MoS2 and Mo1 (S@MoS2 -Mo1 /SGF) with a record high sulfur mass loading of 80.9 wt.% are synthesized as an integrated dual active sites cathode for RT-Na/S batteries. Impressively, the as-prepared S@MoS2 -Mo1 /SGF display unprecedented cyclic stability with a high initial capacity of 1017 mAh g-1 at 0.1 A g-1 and a low-capacity fading rate of 0.05% per cycle over 1000 cycles. Experimental and computational results including X-ray absorption spectroscopy, in situ synchrotron X-ray diffraction and density-functional theory calculations reveal that atomic-level Mo in this integrated dual-active-site forms a delocalized electron system, which could improve the reactivity of sulfur and reaction reversibility of S and Na, greatly alleviating the shuttle effect. The findings not only provide an effective strategy to fabricate high-performance dual-site cathodes, but also deepen the understanding of their enhancement mechanisms at an atomic level.

2.
Sci Rep ; 5: 7671, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25567317

RESUMEN

Practical applications of the high temperature thermoelectric materials developed so far are partially obstructed by the costly and complicated fabrication process. In this work, we put forward two additional important properties for thermoelectric materials, high crystal symmetry and congruent melting. We propose that the recently discovered thermoelectric material Cu2-xSe, with figure of merit, zT, over 1.5 at T of ~ 1000 K, should meet these requirements, based on our analysis of its crystal structure and the Cu-Se binary phase diagram. We found that its excellent thermoelectric performance is intrinsic, and less dependent on grain size, while highly dense samples can be easily fabricated by a melt-quenching approach. Our results reveal that the melt-quenched samples and single crystals exhibit almost the same superior thermoelectric performance, with zT as high as 1.7-1.8 at T of ~973 K. Our findings not only provide a cheap and fast fabrication method for highly dense Cu(2-x)Se bulks with superior thermoelectric performance, paving the way for possible commercialization of Cu2-xSe as an outstanding component in practical thermoelectric modules, but also provide guidance in searching for new classes of thermoelectric systems with high crystal symmetry or further improving the cost performance of other existing congruent-melting thermoelectric materials.

3.
J Am Chem Soc ; 136(50): 17626-33, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25419613

RESUMEN

Surfactant-free CuAgSe nanoparticles were successfully synthesized on a large scale within a short reaction time via a simple environmentally friendly aqueous approach under room temperature. The nanopowders obtained were consolidated into pellets for investigation of their thermoelectric properties between 3 and 623 K. The pellets show strong metallic characteristics below 60 K and turn into an n-type semiconductor with increasing temperature, accompanied by changes in the crystal structure (i.e., from the pure tetragonal phase into a mixture of tetragonal and orthorhombic phases), the electrical conductivity, the Seebeck coefficient, and the thermal conductivity, which leads to a figure of merit (ZT) of 0.42 at 323 K. The pellets show further interesting temperature-dependent transition from n-type into p-type in electrical conductivity arising from phase transition (i.e., from the mixture phases into cubic phase), evidenced by the change of the Seebeck coefficient from -28 µV/K into 226 µV/K at 467 K. The ZT value increased with increasing temperature after the phase transition and reached 0.9 at 623 K. The sintered CuAgSe pellets also display excellent stability, and there is no obvious change observed after 5 cycles of consecutive measurements. Our results demonstrate the potential of CuAgSe to simultaneously serve (at different temperatures) as both an n-type and a p-type thermoelectric material.

5.
Chem Commun (Camb) ; 47(43): 11894-6, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-21975534

RESUMEN

Co(2+)-doped CdSe colloidal nanowires with tunable size and dopant concentration have been prepared by a solution-liquid-solid (SLS) approach for the first time. These doped nanowires exhibit anomalous photoluminescence temperature dependence in comparison with undoped nanowires.


Asunto(s)
Compuestos de Cadmio/química , Cobalto/química , Nanocables/química , Compuestos de Selenio/química , Coloides/química , Semiconductores , Espectrometría de Fluorescencia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA