RESUMEN
Balkan endemic nephropathy (BEN) is a chronic kidney disease that predominantly affects inhabitants of rural farming communities along the Danube River tributaries in the Balkans. Long-standing research has identified dietary exposure to aristolochic acids (AAs) as the principal toxicological cause. This study investigates the pathophysiological role of anemia in BEN, noting its earlier and more severe manifestation in BEN patients compared to those with other chronic kidney diseases. Utilizing a mouse model, our research demonstrates that prolonged exposure to aristolochic acid I (AA-I) (the most prevalent AA variant) leads to significant red blood cell depletion through DNA damage, such as DNA adduct formation in bone marrow, prior to observable kidney function decline. Furthermore, in vitro experiments with kidney cells exposed to lowered oxygen and pH conditions mimicking an anemia environment show enhanced DNA adduct formation, suggesting increased AA-I mutagenicity and carcinogenicity. These findings indicate for the first time a positive feedback mechanism of AA-induced anemia, DNA damage, and kidney impairment in BEN progression. These results not only advance our understanding of the underlying mechanisms of BEN but also highlight anemia as a potential target for early BEN diagnosis and therapy.
Asunto(s)
Anemia , Ácidos Aristolóquicos , Nefropatía de los Balcanes , Aductos de ADN , Ácidos Aristolóquicos/toxicidad , Ácidos Aristolóquicos/efectos adversos , Nefropatía de los Balcanes/inducido químicamente , Nefropatía de los Balcanes/metabolismo , Nefropatía de los Balcanes/genética , Aductos de ADN/metabolismo , Animales , Ratones , Humanos , Anemia/inducido químicamente , Anemia/metabolismo , Anemia/genética , Masculino , Daño del ADN/efectos de los fármacos , Ratones Endogámicos C57BL , Riñón/efectos de los fármacos , Riñón/metabolismo , FemeninoRESUMEN
Aristolochic acids (AAs) are nephrotoxic and carcinogenic nitrophenanthrene carboxylic acids produced naturally by plants from the Aristolochia and Asarum genera, which have been used extensively as herbal medicines. In addition to consuming AA-containing herbal medicinal products, there is emerging evidence that humans are also exposed to AA through the environment. In 2022, the World Health Organization (WHO) called for global action to remove AA exposure sources and to implement preventative measures against the development of AA-associated cancers. Herein, we report the development of a simple and efficient iron powder-packed reduction column that allows online post-column conversion of the nonfluorescing AA to its corresponding strongly fluorescing aristolactam (AL), facilitating the sensitive and selective detection of AA in herbal medicinal products, food grain, arable soil, or groundwater samples by high-performance liquid chromatography with fluorescence detection. Moreover, AL, a group of naturally occurring derivatives of AA that have demonstrated toxicity to cultured bacteria, human cells, and rats, is monitored and quantified simultaneously with AA in one single run without sacrificing sensitivity. In comparison with existing analytical methods for AA measurement, the newly developed method is not only inexpensive and less laborious, but it also offers improved sensitivity. We believe this novel method will find wide application in identifying the presence of AA in food, herbal medicines, and environmental samples, thus assisting in the identification and removal of AA exposure sources.