Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
bioRxiv ; 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38313283

RESUMEN

Opioid receptors within the CNS regulate pain sensation and mood and are key targets for drugs of abuse. Within the adult rodent hippocampus (HPC), µ-opioid receptor agonists suppress inhibitory parvalbumin-expressing interneurons (PV-INs), thus disinhibiting the circuit. However, it is uncertain if this disinhibitory motif is conserved in other cortical regions, species, or across development. We observed that PV-IN mediated inhibition is robustly suppressed by opioids in HPC but not neocortex in mice and nonhuman primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif was established in early development when immature PV-INs and opioids already influence primordial network rhythmogenesis. Acute opioid-mediated modulation was partially occluded with morphine pretreatment, with implications for the effects of opioids on hippocampal network activity during circuit maturation as well as learning and memory. Together, these findings demonstrate that PV-INs exhibit a divergence in opioid sensitivity across brain regions that is remarkably conserved across evolution and highlights the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.

2.
Neuron ; 111(23): 3802-3818.e5, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37776852

RESUMEN

Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.


Asunto(s)
Fibras Musgosas del Hipocampo , Sinapsis , Animales , Humanos , Fibras Musgosas del Hipocampo/fisiología , Sinapsis/fisiología , Potenciación a Largo Plazo/fisiología , Transducción de Señal
4.
Cell Rep Methods ; 2(6): 100225, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35784651

RESUMEN

The ability to precisely control transgene expression is essential for basic research and clinical applications. Adeno-associated viruses (AAVs) are non-pathogenic and can be used to drive stable expression in virtually any tissue, cell type, or species, but their limited genomic payload results in a trade-off between the transgenes that can be incorporated and the complexity of the regulatory elements controlling their expression. Resolving these competing imperatives in complex experiments inevitably results in compromises. Here, we assemble an optimized viral toolkit (VTK) that addresses these limitations and allows for efficient combinatorial targeting of cell types. Moreover, their modular design explicitly enables further refinements. We achieve this in compact vectors by integrating structural improvements of AAV vectors with innovative molecular tools. We illustrate the potential of this approach through a systematic demonstration of their utility for targeting cell types and querying their biology using a wide array of genetically encoded tools.


Asunto(s)
Vectores Genéticos , Sistema Nervioso , Transducción Genética , Vectores Genéticos/genética , Transgenes/genética
5.
Front Mol Neurosci ; 14: 712609, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630033

RESUMEN

Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.

6.
Nat Neurosci ; 23(12): 1629-1636, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32807948

RESUMEN

Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple new enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we discovered enhancers selective for parvalbumin (PV) and vasoactive intestinal peptide-expressing interneurons. Demonstrating the functional utility of these elements, we show that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across vertebrate species, including humans. Finally, we demonstrate that our selection method is generalizable and characterizes additional PV-specific enhancers with exquisite specificity within distinct brain regions. Altogether, these viral tools can be used for cell-type-specific circuit manipulation and hold considerable promise for use in therapeutic interventions.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Interneuronas/fisiología , Animales , Callithrix , Corteza Cerebral/citología , Femenino , Humanos , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neuronas , Parvalbúminas/fisiología , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Péptido Intestinal Vasoactivo/fisiología
7.
Elife ; 92020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32496194

RESUMEN

The ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance in human circuit function. In this study, we focus on neurogliaform cells, that possess specialized physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms underlying human cognitive processing and behavior.


Asunto(s)
Interneuronas/fisiología , Plasticidad Neuronal , Adulto , Anciano , Animales , Evolución Biológica , Encéfalo/fisiología , Femenino , Humanos , Interneuronas/química , Masculino , Ratones , Persona de Mediana Edad , Neuroglía/química , Neuroglía/fisiología , Células Piramidales/química , Células Piramidales/fisiología , Adulto Joven
8.
Elife ; 92020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32053107

RESUMEN

In violation of Dale's principle several neuronal subtypes utilize more than one classical neurotransmitter. Molecular identification of vesicular glutamate transporter three and cholecystokinin expressing cortical interneurons (CCK+VGluT3+INTs) has prompted speculation of GABA/glutamate corelease from these cells for almost two decades despite a lack of direct evidence. We unequivocally demonstrate CCK+VGluT3+INT-mediated GABA/glutamate cotransmission onto principal cells in adult mice using paired recording and optogenetic approaches. Although under normal conditions, GABAergic inhibition dominates CCK+VGluT3+INT signaling, glutamatergic signaling becomes predominant when glutamate decarboxylase (GAD) function is compromised. CCK+VGluT3+INTs exhibit surprising anatomical diversity comprising subsets of all known dendrite targeting CCK+ interneurons in addition to the expected basket cells, and their extensive circuit innervation profoundly dampens circuit excitability under normal conditions. However, in contexts where the glutamatergic phenotype of CCK+VGluT3+INTs is amplified, they promote paradoxical network hyperexcitability which may be relevant to disorders involving GAD dysfunction such as schizophrenia or vitamin B6 deficiency.


Asunto(s)
Ácido Glutámico/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Interneuronas/metabolismo , Ratones
9.
Trends Neurosci ; 42(4): 237-239, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30712884

RESUMEN

The multifaceted functions of the brain are borne through seemingly infinite spatiotemporal interactions between its resident neural elements. Using a combinatorial approach, Schuman and colleagues (J. Neurosci. 2018;39:125-139) recently identify four layer 1 cortical interneuron subtypes, including a hitherto uncharacterized neuron they term the 'canopy' cell. Properties unique to each of the subtypes likely endow them with distinct roles in top-down processing.


Asunto(s)
Neocórtex , Interneuronas , Neuronas
10.
Physiol Rev ; 97(4): 1619-1747, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28954853

RESUMEN

In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Inhibición Neural , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo , Animales , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/fisiopatología , Neuronas GABAérgicas/patología , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Interneuronas/patología , Red Nerviosa/metabolismo , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Receptores de GABA/metabolismo
11.
Cell Rep ; 20(9): 2156-2168, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28854365

RESUMEN

Although Netos are considered auxiliary subunits critical for kainate receptor (KAR) function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM)-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1)-, and parvalbumin (PV)-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediated inhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.


Asunto(s)
Dendritas/metabolismo , Interneuronas/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de la Membrana/metabolismo , Red Nerviosa/metabolismo , Inhibición Neural , Receptores de Ácido Kaínico/metabolismo , Receptores Presinapticos/metabolismo , Animales , Ritmo Gamma , Activación del Canal Iónico , Ácido Kaínico , Ratones Noqueados , Ratones Mutantes , Mutación/genética , Regiones Promotoras Genéticas/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato
13.
Neuron ; 85(6): 1257-72, 2015 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-25754824

RESUMEN

Circuit computation requires precision in the timing, extent, and synchrony of principal cell (PC) firing that is largely enforced by parvalbumin-expressing, fast-spiking interneurons (PVFSIs). To reliably coordinate network activity, PVFSIs exhibit specialized synaptic and membrane properties that promote efficient afferent recruitment such as expression of high-conductance, rapidly gating, GluA4-containing AMPA receptors (AMPARs). We found that PVFSIs upregulate GluA4 during the second postnatal week coincident with increases in the AMPAR clustering proteins NPTX2 and NPTXR. Moreover, GluA4 is dramatically reduced in NPTX2(-/-)/NPTXR(-/-) mice with consequent reductions in PVFSI AMPAR function. Early postnatal NPTX2(-/-)/NPTXR(-/-) mice exhibit delayed circuit maturation with a prolonged critical period permissive for giant depolarizing potentials. Juvenile NPTX2(-/-)/NPTXR(-/-) mice display reduced feedforward inhibition yielding a circuit deficient in rhythmogenesis and prone to epileptiform discharges. Our findings demonstrate an essential role for NPTXs in controlling network dynamics highlighting potential therapeutic targets for disorders with inhibition/excitation imbalances such as schizophrenia.


Asunto(s)
Potenciales de Acción/fisiología , Proteína C-Reactiva/metabolismo , Interneuronas/metabolismo , Red Nerviosa/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Parvalbúminas/metabolismo , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Proteína C-Reactiva/deficiencia , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia
14.
Nat Neurosci ; 16(11): 1598-607, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24097043

RESUMEN

Forebrain circuits rely upon a relatively small but remarkably diverse population of GABAergic interneurons to bind and entrain large principal cell assemblies for network synchronization and rhythmogenesis. Despite the high degree of heterogeneity across cortical interneurons, members of a given subtype typically exhibit homogeneous developmental origins, neuromodulatory response profiles, morphological characteristics, neurochemical signatures and electrical features. Here we report a surprising divergence among hippocampal oriens-lacunosum moleculare (O-LM) projecting interneurons that have hitherto been considered a homogeneous cell population. Combined immunocytochemical, anatomical and electrophysiological interrogation of Htr3a-GFP and Nkx2-1-cre:RCE mice revealed that O-LM cells parse into a caudal ganglionic eminence-derived subpopulation expressing 5-HT(3A) receptors (5-HT(3A)Rs) and a medial ganglionic eminence-derived subpopulation lacking 5-HT(3A)Rs. These two cohorts differentially participate in network oscillations, with 5-HT(3A)R-containing O-LM cell recruitment dictated by serotonergic tone. Thus, members of a seemingly uniform interneuron population can exhibit unique circuit functions and neuromodulatory properties dictated by disparate developmental origins.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/citología , Hipocampo/fisiología , Interneuronas/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Movimiento Celular/genética , Colecistoquinina/metabolismo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neurotransmisores/farmacología , Proteínas Nucleares/genética , Receptores de Serotonina 5-HT3/genética , Somatostatina/metabolismo , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Péptido Intestinal Vasoactivo/metabolismo
15.
Nat Neurosci ; 16(8): 1032-41, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23852113

RESUMEN

Disrupted excitatory synapse maturation in GABAergic interneurons may promote neuropsychiatric disorders such as schizophrenia. However, establishing developmental programs for nascent synapses in GABAergic cells is confounded by their sparsity, heterogeneity and late acquisition of subtype-defining characteristics. We investigated synaptic development in mouse interneurons targeting cells by lineage from medial ganglionic eminence (MGE) or caudal ganglionic eminence (CGE) progenitors. MGE-derived interneuron synapses were dominated by GluA2-lacking AMPA-type glutamate receptors (AMPARs), with little contribution from NMDA-type receptors (NMDARs) throughout development. In contrast, CGE-derived cell synapses had large NMDAR components and used GluA2-containing AMPARs. In neonates, both MGE- and CGE-derived interneurons expressed primarily GluN2B subunit-containing NMDARs, which most CGE-derived interneurons retained into adulthood. However, MGE-derived interneuron NMDARs underwent a GluN2B-to-GluN2A switch that could be triggered acutely with repetitive synaptic activity. Our findings establish ganglionic eminence-dependent rules for early synaptic integration programs of distinct interneuron cohorts, including parvalbumin- and cholecystokinin-expressing basket cells.


Asunto(s)
Neuronas GABAérgicas/citología , Regulación del Desarrollo de la Expresión Génica , Hipocampo/citología , Interneuronas/citología , Neocórtex/citología , Plasticidad Neuronal , Receptores AMPA/química , Receptores de N-Metil-D-Aspartato/química , Telencéfalo/embriología , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores , Linaje de la Célula , Potenciales Postsinápticos Excitadores , Femenino , Neuronas GABAérgicas/metabolismo , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Interneuronas/clasificación , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Proteínas del Tejido Nervioso/análisis , Especificidad de Órganos , Receptores AMPA/análisis , Receptores AMPA/biosíntesis , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/análisis , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Transmisión Sináptica , Telencéfalo/citología
16.
Nat Neurosci ; 16(1): 13-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23222912

RESUMEN

Despite the prevailing idea that neurogliaform cells produce a spatially unrestricted widespread inhibition, we demonstrate here that their activity attenuates thalamic-evoked feed-forward inhibition in layer IV barrel cortex but has no effect on feed-forward excitation. The result of this circuit selectivity is a dynamic regulation in the temporal window for integration of excitatory thalamic input, thus revealing a new role for neurogliaform cells in shaping sensory processing.


Asunto(s)
Neuroglía/fisiología , Dinámicas no Lineales , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Potenciales de Acción/genética , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , GABAérgicos/farmacología , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Ratones , Ratones Transgénicos , Modelos Neurológicos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Inhibición Neural/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuropéptido Y/genética , Ácidos Nipecóticos/farmacología , Parvalbúminas/metabolismo , Ácidos Fosfínicos/farmacología , Propanolaminas/farmacología , Receptores de Serotonina/genética , Sinapsis/efectos de los fármacos , Sinapsis/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-23162435

RESUMEN

In the developing nervous system synaptic refinement, typified by the neuromuscular junction where supernumerary connections are eliminated by axon retraction leaving the postsynaptic target innervated by a single dominant input, critically regulates neuronal circuit formation. Whether such competition-based pruning continues in established circuits of mature animals remains unknown. This question is particularly relevant in the context of adult neurogenesis where newborn cells must integrate into preexisting circuits, and thus, potentially compete with functionally mature synapses to gain access to their postsynaptic targets. The hippocampus plays an important role in memory formation/retrieval and the dentate gyrus (DG) subfield exhibits continued neurogenesis into adulthood. Therefore, this region contains both mature granule cells (old GCs) and immature recently born GCs that are generated throughout adult life (young GCs), providing a neurogenic niche model to examine the role of competition in synaptic refinement. Recent work from an independent group in developing animals indicated that embryonically/early postnatal generated GCs placed at a competitive disadvantage by selective expression of tetanus toxin (TeTX) to prevent synaptic release rapidly retracted their axons, and that this retraction was driven by competition from newborn GCs lacking TeTX. In contrast, following 3-6 months of selective TeTX expression in old GCs of adult mice we did not observe any evidence of axon retraction. Indeed ultrastructural analyses indicated that the terminals of silenced GCs even maintained synaptic contact with their postsynaptic targets. Furthermore, we did not detect any significant differences in the electrophysiological properties between old GCs in control and TeTX conditions. Thus, our data demonstrate a remarkable stability in the face of a relatively prolonged period of altered synaptic competition between two populations of neurons within the adult brain.

18.
Cell ; 149(1): 188-201, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22365813

RESUMEN

Adult-born granule cells (GCs), a minor population of cells in the hippocampal dentate gyrus, are highly active during the first few weeks after functional integration into the neuronal network, distinguishing them from less active, older adult-born GCs and the major population of dentate GCs generated developmentally. To ascertain whether young and old GCs perform distinct memory functions, we created a transgenic mouse in which output of old GCs was specifically inhibited while leaving a substantial portion of young GCs intact. These mice exhibited enhanced or normal pattern separation between similar contexts, which was reduced following ablation of young GCs. Furthermore, these mutant mice exhibited deficits in rapid pattern completion. Therefore, pattern separation requires adult-born young GCs but not old GCs, and older GCs contribute to the rapid recall by pattern completion. Our data suggest that as adult-born GCs age, their function switches from pattern separation to rapid pattern completion.


Asunto(s)
Envejecimiento , Giro Dentado/citología , Giro Dentado/fisiología , Animales , Emparejamiento Cromosómico , Giro Dentado/crecimiento & desarrollo , Proteínas Fluorescentes Verdes/genética , Hipocampo/fisiología , Memoria , Ratones , Ratones Transgénicos
19.
Nat Neurosci ; 13(10): 1240-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20871602

RESUMEN

Feedforward GABAergic inhibition sets the dendritic integration window, thereby controlling timing and output in cortical circuits. However, the manner in which feedforward inhibitory circuits emerge is unclear, despite this being a critical step for neocortical development and function. We found that sensory experience drove plasticity of the feedforward inhibitory circuit in mouse layer 4 somatosensory barrel cortex in the second postnatal week via two distinct mechanisms. First, sensory experience selectively strengthened thalamocortical-to-feedforward interneuron inputs via a presynaptic mechanism but did not regulate other inhibitory circuit components. Second, experience drove a postsynaptic mechanism in which a downregulation of a prominent thalamocortical NMDA excitatory postsynaptic potential in stellate cells regulated the final expression of functional feedforward inhibitory input. Thus, experience is required for specific, coordinated changes at thalamocortical synapses onto both inhibitory and excitatory neurons, producing a circuit plasticity that results in maturation of functional feedforward inhibition in layer 4.


Asunto(s)
Retroalimentación Sensorial/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Corteza Somatosensorial/citología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Estimulación Eléctrica/métodos , Antagonistas del GABA/farmacología , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Piridazinas/farmacología , Privación Sensorial/fisiología , Estadísticas no Paramétricas , Tálamo/citología , Vibrisas/inervación , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Ácido gamma-Aminobutírico/farmacología
20.
J Neurosci ; 30(33): 11202-9, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20720128

RESUMEN

Inhibitory synaptic transmission in the hippocampus in mediated by a wide variety of different interneuron classes which are assumed to play different roles in network activity. Activation of presynaptic kainate receptors (KARs) has been shown to reduce inhibitory transmission but the interneuron class(es) at which they act is only recently beginning to emerge. Using paired recordings we show that KAR activation causes a decrease in presynaptic release from cholecystokinin (CCK)- but not parvalbumin-containing interneurons and that this decrease is observed when pyramidal cells, but not interneurons, are the postsynaptic target. We also show that although the synchronous release component is reduced, the barrage of asynchronous GABA release from CCK interneurons during sustained firing is unaffected by KAR activation. This indicates that presynaptic KARs preserve and act in concert with asynchronous release to switch CCK interneurons from a phasic inhibition mode to produce prolonged inhibition during periods of intense activity.


Asunto(s)
Colecistoquinina/metabolismo , Hipocampo/fisiología , Interneuronas/fisiología , Terminales Presinápticos/fisiología , Receptores de Ácido Kaínico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/fisiología , Animales , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/fisiología , Ácido Kaínico/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Receptor Cannabinoide CB1/metabolismo , Receptores de GABA-B/metabolismo , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA