Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomed Pharmacother ; 177: 117051, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959608

RESUMEN

Due to the limitations of the current skin wound treatments, it is highly valuable to have a wound healing formulation that mimics the extracellular matrix (ECM) and mechanical properties of natural skin tissue. Here, a novel biomimetic hydrogel formulation has been developed based on a mixture of Agarose-Collagen Type I (AC) combined with skin ECM-related components: Dermatan sulfate (DS), Hyaluronic acid (HA), and Elastin (EL) for its application in skin tissue engineering (TE). Different formulations were designed by combining AC hydrogels with DS, HA, and EL. Cell viability, hemocompatibility, physicochemical, mechanical, and wound healing properties were investigated. Finally, a bilayered hydrogel loaded with fibroblasts and mesenchymal stromal cells was developed using the Ag-Col I-DS-HA-EL (ACDHE) formulation. The ACDHE hydrogel displayed the best in vitro results and acceptable physicochemical properties. Also, it behaved mechanically close to human native skin and exhibited good cytocompatibility. Environmental scanning electron microscopy (ESEM) analysis revealed a porous microstructure that allows the maintenance of cell growth and ECM-like structure production. These findings demonstrate the potential of the ACDHE hydrogel formulation for applications such as an injectable hydrogel or a bioink to create cell-laden structures for skin TE.


Asunto(s)
Materiales Biomiméticos , Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Humanos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ingeniería de Tejidos/métodos , Supervivencia Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Cicatrización de Heridas/efectos de los fármacos , Colágeno Tipo I/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Dermatán Sulfato/química , Dermatán Sulfato/farmacología , Fibroblastos/efectos de los fármacos , Elastina/química , Matriz Extracelular/metabolismo , Biomimética/métodos , Sefarosa/química , Dermis/efectos de los fármacos , Dermis/metabolismo , Dermis/citología , Animales
2.
Biofabrication ; 15(3)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36041423

RESUMEN

Conventionalin vitrocancer models do not accurately reproduce the tumor microenvironment (TME), so three-dimensional (3D)-bioprinting represents an excellent tool to overcome their limitations. Here, two multicellular tri-layered malignant melanoma (MM) models composed by cancer stem cells (CSCs) isolated from a MM established cell line or a primary-patient derived cell line, fibroblasts, mesenchymal stem cells, and endothelial cells, embedded within an agarose-collagen type I hydrogel were bioprinted. Embedded-cells showed high proliferation and metabolic activity, and actively remodeled their TME. MM hydrogels displayed similar rheological properties that skin and were able to support an early onset of vascularization. Besides, MM hydrogels displayed different response to vemurafenib compared with cell cultures, and supported tumorigenesis in murine xenotransplant achieving more mimeticin vivomodels. For the first time a tri-layered 3D-bioprinted CSC-based human MM model is developed recreating TMEin vitroandin vivoand response to treatment, being useful for precision treatment regimens against MM.


Asunto(s)
Bioimpresión , Melanoma , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Células Endoteliales , Hidrogeles/farmacología , Colágeno Tipo I/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Microambiente Tumoral
3.
Adv Healthc Mater ; 10(8): e2001847, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33646595

RESUMEN

The use of decellularized extracellular matrix (dECM) as a biomaterial has been an important step forward for the development of functional tissue constructs. In addition to tissues and organs, cell cultures are gaining a lot of attention as an alternative source of dECM. In this work, a novel biomimetic hydrogel is developed based on dECM obtained from mesenchymal stem cells (mdECM) for cartilage tissue engineering. To this end, cells are seeded under specific culture conditions to generate an early chondrogenic extracellular matrix (ECM) providing cues and elements necessary for cartilage development. The composition is determined by quantitative, histological, and mass spectrometry techniques. Moreover, the decellularization process is evaluated by measuring the DNA content and compositional analyses, and the hydrogel is formulated at different concentrations (3% and 6% w/v). Results show that mdECM derived hydrogels possess excellent biocompatibility and suitable physicochemical and mechanical properties for their injectability. Furthermore, it is evidenced that this hydrogel is able to induce chondrogenesis of mesenchymal stem cells (MSCs) without supplemental factors and, furthermore, to form hyaline cartilage-like tissue after in vivo implantation. These findings demonstrate for the first time the potential of this hydrogel based on mdECM for applications in cartilage repair and regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Biomimética , Cartílago , Diferenciación Celular , Condrogénesis , Matriz Extracelular , Hidrogeles , Ingeniería de Tejidos , Andamios del Tejido
4.
Bioeng Transl Med ; 6(1): e10192, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532591

RESUMEN

Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage-like mechanical properties capable of sustaining high load-bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4-butanediol thermoplastic polyurethane elastomer (b-TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b-TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad-derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT-qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b-TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b-TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b-TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.

5.
Pharmaceutics ; 12(11)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153183

RESUMEN

Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. This characteristic makes LVs ideal for clinical research, as has been demonstrated with the approval of lentivirus-based gene therapies from the Food and Drug Administration and the European Agency for Medicine. A large number of functional lentiviral particles are required for clinical trials, and large-scale production has been challenging. Therefore, efforts are focused on solving the drawbacks associated with the production and purification of LVsunder current good manufacturing practice. In recent years, we have witnessed the development and optimization of new protocols, packaging cell lines, and culture devices that are very close to reaching the target production level. Here, we review the most recent, efficient, and promising methods for the clinical-scale production ofLVs.

6.
Sci Rep ; 9(1): 11359, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388092

RESUMEN

Cancer stem cells (CSCs) subpopulation within the tumour is responsible for metastasis and cancer relapse. Here we investigate in vitro and in vivo the effects of a pancreatic (pro)enzyme mixture composed of Chymotrypsinogen and Trypsinogen (PRP) on CSCs derived from a human pancreatic cell line, BxPC3. Exposure of pancreatic CSCs spheres to PRP resulted in a significant decrease of ALDEFLUOR and specific pancreatic CSC markers (CD 326, CD 44 and CxCR4) signal tested by flow cytometry, further CSCs markers expression was also analyzed by western and immunofluorescence assays. PRP also inhibits primary and secondary sphere formation. Three RT2 Profiler PCR Arrays were used to study gene expression regulation after PRP treatment and resulted in, (i) epithelial-mesenchymal transition (EMT) inhibition; (ii) CSCs related genes suppression; (iii) enhanced expression of tumour suppressor genes; (iv) downregulation of migration and metastasis genes and (v) regulation of MAP Kinase Signalling Pathway. Finally, in vivo anti-tumor xenograft studies demonstrated high anti-tumour efficacy of PRP against tumours induced by BxPC3 human pancreatic CSCs. PRP impaired engrafting of pancreatic CSC's tumours in nude mice and displayed an antigrowth effect toward initiated xenografts. We concluded that (pro)enzymes treatment is a valuable strategy to suppress the CSC population in solid pancreatic tumours.


Asunto(s)
Quimotripsinógeno/farmacología , Transición Epitelial-Mesenquimal , Genes Supresores de Tumor , Sistema de Señalización de MAP Quinasas , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Tripsinógeno/farmacología , Animales , Línea Celular Tumoral , Quimotripsinógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/fisiología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/fisiopatología , Tripsinógeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Adv Exp Med Biol ; 1059: 331-350, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736581

RESUMEN

Osteochondral (OC) lesions are a major cause of chronic musculoskeletal pain and functional disability, which reduces the quality of life of the patients and entails high costs to the society. Currently, there are no effective treatments, so in vitro and in vivo disease models are critically important to obtain knowledge about the causes and to develop effective treatments for OC injuries. In vitro models are essential to clarify the causes of the disease and the subsequent design of the first barrier to test potential therapeutics. On the other hand, in vivo models are anatomically more similar to humans allowing to reproduce the pattern and progression of the lesion in a controlled scene and offering the opportunity to study the symptoms and responses to new treatments. Moreover, in vivo models are the most suitable preclinical model, being a fundamental and a mandatory step to ensure the successful transfer to clinical trials. Both in vitro and in vitro models have a number of advantages and limitation, and the choice of the most appropriate model for each study depends on many factors, such as the purpose of the study, handling or the ease to obtain, and cost, among others. In this chapter, we present the main in vitro and in vivo OC disease models that have been used over the years in the study of origin, progress, and treatment approaches of OC defects.


Asunto(s)
Enfermedades Óseas , Enfermedades de los Cartílagos , Modelos Animales , Animales , Animales Modificados Genéticamente , Enfermedades Óseas/etiología , Enfermedades Óseas/genética , Enfermedades Óseas/terapia , Enfermedades de los Cartílagos/inducido químicamente , Enfermedades de los Cartílagos/etiología , Enfermedades de los Cartílagos/genética , Enfermedades de los Cartílagos/terapia , Técnicas de Cultivo de Célula , Condrocitos/citología , Condrogénesis , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Humanos , Traumatismos de la Rodilla/etiología , Mamíferos , Técnicas de Cultivo de Órganos , Osteoartritis/etiología , Osteoartritis/genética , Osteoartritis/patología , Osteoartritis/terapia , Osteogénesis , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA