Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; : 101376, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969206

RESUMEN

BACKGROUND & AIMS: Restricted gastric motor functions contribute to aging-associated under-nutrition, sarcopenia, and frailty. We previously identified a decline in interstitial cells of Cajal (ICC, gastrointestinal pacemaker and neuromodulator cells) and their stem cells (ICC-SC) as a key factor of gastric aging. Altered functionality of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) is central to organismal aging. Here, we investigated the role of EZH2 in the aging-related loss of ICC/ICC-SC. METHODS: klotho mice, a model of accelerated aging, were treated with the most clinically advanced EZH2 inhibitor, EPZ6438 (tazemetostat; 160 mg/kg i.p. BID for 3 weeks). Gastric ICC were analyzed by western blotting (WB) and immunohistochemistry. ICC and ICC-SC were quantified by flow cytometry. Gastric slow wave activity was assessed by intracellular electrophysiology. Ezh2 was deactivated in ICC by treating KitcreERT2/+;Ezh2fl/fl mice with tamoxifen. TRP53, a key mediator of aging-related ICC loss, was induced with nutlin 3a in gastric muscle organotypic cultures and an ICC-SC line. RESULTS: In klotho mice, EPZ6438 treatment mitigated the decline in the ICC growth factor KIT ligand/stem cell factor and gastric ICC. EPZ6438 also improved gastric slow wave activity and mitigated the reduced food intake and impaired body weight gain characteristic of this strain. Conditional genomic deletion of Ezh2 in Kit-expressing cells also prevented ICC loss. In organotypic cultures and ICC-SC, EZH2 inhibition prevented the aging-like effects of TRP53 stabilization on ICC/ICC-SC. CONCLUSIONS: Inhibition of EZH2 with EPZ6438 mitigates aging-related ICC/ICC-SC loss and gastric motor dysfunction, improving slow wave activity and food intake in klotho mice.

2.
J Smooth Muscle Res ; 60: 1-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38462479

RESUMEN

Macrophages are the originators of inflammatory compounds, phagocytic purifiers in their local environment, and wound healing protectors in oxidative environments. They are molded by the tissue milieu they inhabit, with gastrointestinal (GI) muscularis macrophages (MMs) being a prime example. MMs are located in the muscular layer of the GI tract and contribute to muscle repair and maintenance of GI motility. MMs are often in close proximity to the enteric nervous system, specifically near the enteric neurons and interstitial cells of Cajal (ICCs). Consequently, the anti-inflammatory function of MMs corresponds to the development and maintenance of neural networks in the GI tract. The capacity of MMs to shift from anti-inflammatory to proinflammatory states may contribute to the inflammatory aspects of various GI diseases and disorders such as diabetic gastroparesis or postoperative ileus, functional disorders such as irritable bowel syndrome, and organic diseases such as inflammatory bowel disease. We reviewed the current knowledge of MMs and their influence on neighboring cells due to their important role in the GI tract.


Asunto(s)
Sistema Nervioso Entérico , Antiinflamatorios , Motilidad Gastrointestinal , Tracto Gastrointestinal , Macrófagos , Músculos , Humanos
3.
Biomolecules ; 13(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37759758

RESUMEN

Neurointestinal diseases result from dysregulated interactions between the nervous system and the gastrointestinal (GI) tract, leading to conditions such as Hirschsprung's disease and irritable bowel syndrome. These disorders affect many people, significantly diminishing their quality of life and overall health. Central to GI motility are the interstitial cells of Cajal (ICC), which play a key role in muscle contractions and neuromuscular transmission. This review highlights the role of ICC in neurointestinal diseases, revealing their association with various GI ailments. Understanding the functions of the ICC could lead to innovative perspectives on the modulation of GI motility and introduce new therapeutic paradigms. These insights have the potential to enhance efforts to combat neurointestinal diseases and may lead to interventions that could alleviate or even reverse these conditions.

4.
Gastroenterology ; 165(6): 1458-1474, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37597632

RESUMEN

BACKGROUND & AIMS: Although depletion of neuronal nitric oxide synthase (NOS1)-expressing neurons contributes to gastroparesis, stimulating nitrergic signaling is not an effective therapy. We investigated whether hypoxia-inducible factor 1α (HIF1A), which is activated by high O2 consumption in central neurons, is a Nos1 transcription factor in enteric neurons and whether stabilizing HIF1A reverses gastroparesis. METHODS: Mice with streptozotocin-induced diabetes, human and mouse tissues, NOS1+ mouse neuroblastoma cells, and isolated nitrergic neurons were studied. Gastric emptying of solids and volumes were determined by breath test and single-photon emission computed tomography, respectively. Gene expression was analyzed by RNA-sequencing, microarrays, immunoblotting, and immunofluorescence. Epigenetic assays included chromatin immunoprecipitation sequencing (13 targets), chromosome conformation capture sequencing, and reporter assays. Mechanistic studies used Cre-mediated recombination, RNA interference, and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated epigenome editing. RESULTS: HIF1A signaling from physiological intracellular hypoxia was active in mouse and human NOS1+ myenteric neurons but reduced in diabetes. Deleting Hif1a in Nos1-expressing neurons reduced NOS1 protein by 50% to 92% and delayed gastric emptying of solids in female but not male mice. Stabilizing HIF1A with roxadustat (FG-4592), which is approved for human use, restored NOS1 and reversed gastroparesis in female diabetic mice. In nitrergic neurons, HIF1A up-regulated Nos1 transcription by binding and activating proximal and distal cis-regulatory elements, including newly discovered super-enhancers, facilitating RNA polymerase loading and pause-release, and by recruiting cohesin to loop anchors to alter chromosome topology. CONCLUSIONS: Pharmacologic HIF1A stabilization is a novel, translatable approach to restoring nitrergic signaling and treating diabetic gastroparesis. The newly recognized effects of HIF1A on chromosome topology may provide insights into physioxia- and ischemia-related organ function.


Asunto(s)
Diabetes Mellitus Experimental , Gastroparesia , Animales , Femenino , Humanos , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Epigénesis Genética , Gastroparesia/genética , Neuronas , Óxido Nítrico Sintasa de Tipo I
5.
Cell Mol Gastroenterol Hepatol ; 16(3): 369-383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37301443

RESUMEN

BACKGROUND & AIMS: Impaired gastric motor function in the elderly causes reduced food intake leading to frailty and sarcopenia. We previously found that aging-related impaired gastric compliance was mainly owing to depletion of interstitial cells of Cajal (ICC), pacemaker cells, and neuromodulator cells. These changes were associated with reduced food intake. Transformation-related protein 53-induced suppression of extracellular signal-regulated protein kinase (ERK)1/2 in ICC stem cell (ICC-SC) cell-cycle arrest is a key process for ICC depletion and gastric dysfunction during aging. Here, we investigated whether insulin-like growth factor 1 (IGF1), which can activate ERK in gastric smooth muscles and invariably is reduced with age, could mitigate ICC-SC/ICC loss and gastric dysfunction in klotho mice, a model of accelerated aging. METHODS: Klotho mice were treated with the stable IGF1 analog LONG R3 recombinant human (rh) IGF1 (150 µg/kg intraperitoneally twice daily for 3 weeks). Gastric ICC/ICC-SC and signaling pathways were studied by flow cytometry, Western blot, and immunohistochemistry. Gastric compliance was assessed in ex vivo systems. Transformation-related protein 53 was induced with nutlin 3a and ERK1/2 signaling was activated by rhIGF-1 in the ICC-SC line. RESULTS: LONG R3 rhIGF1 treatment prevented reduced ERK1/2 phosphorylation and gastric ICC/ICC-SC decrease. LONG R3 rhIGF1 also mitigated the reduced food intake and impaired body weight gain. Improved gastric function by LONG R3 rhIGF1 was verified by in vivo systems. In ICC-SC cultures, rhIGF1 mitigated nutlin 3a-induced reduced ERK1/2 phosphorylation and cell growth arrest. CONCLUSIONS: IGF1 can mitigate age-related ICC/ICC-SC loss by activating ERK1/2 signaling, leading to improved gastric compliance and increased food intake in klotho mice.


Asunto(s)
Insulina , Células Intersticiales de Cajal , Anciano , Animales , Humanos , Ratones , Envejecimiento , Insulina/metabolismo , Células Intersticiales de Cajal/metabolismo , Sistema de Señalización de MAP Quinasas , Estómago
6.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372958

RESUMEN

Due to modern medical advancements, greater proportions of the population will continue to age with longer life spans. Increased life span, however, does not always correlate with improved health span, and may result in an increase in aging-related diseases and disorders. These diseases are often attributed to cellular senescence, in which cells become disengaged from the cell cycle and inert to cell death. These cells are characterized by a proinflammatory secretome. The proinflammatory senescence-associated secretory phenotype, although part of a natural function intended to prevent further DNA damage, creates a microenvironment suited to tumor progression. This microenvironment is most evident in the gastrointestinal tract (GI), where a combination of bacterial infections, senescent cells, and inflammatory proteins can lead to oncogenesis. Thus, it is important to find potential senescence biomarkers as targets of novel therapies for GI diseases and disorders including cancers. However, finding therapeutic targets in the GI microenvironment to reduce the risk of GI tumor onset may also be of value. This review summarizes the effects of cellular senescence on GI aging, inflammation, and cancers, and aims to improve our understanding of these processes with a goal of enhancing future therapy.


Asunto(s)
Senescencia Celular , Neoplasias , Humanos , Neoplasias/metabolismo , Inflamación , Tracto Gastrointestinal/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA