Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 139(3): 591-600, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22190641

RESUMEN

How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed. Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses trpa1b, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter (Isl1SS). We found that Trpa1b and Isl1SS neurons have overall similar axon trajectories but different branching morphologies and distributions of presynaptic sites. Compared with Trpa1b neurons, Isl1SS neurons display reduced branch growth and synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Isl1SS neurons depends on the guidance receptor Robo2. robo2 is preferentially expressed in the Isl1SS subset and inhibits branch growth and synaptogenesis. In the absence of Robo2, Isl1SS afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system.


Asunto(s)
Axones/fisiología , Neurogénesis , Receptores Inmunológicos/metabolismo , Nervio Trigémino/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Canales Iónicos/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Morfogénesis , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Canal Catiónico TRPA1 , Factores de Transcripción/metabolismo , Canales de Potencial de Receptor Transitorio , Nervio Trigémino/anatomía & histología , Nervio Trigémino/metabolismo
2.
Development ; 135(19): 3259-69, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18755773

RESUMEN

Among sensory systems, the somatic sense is exceptional in its ability to detect a wide range of chemical, mechanical and thermal stimuli. How this sensory diversity is established during development remains largely elusive. We devised a method (BAPTISM) that uses the photoconvertible fluorescent protein Kaede to simultaneously analyze birthdate and cell fate in live zebrafish embryos. We found that trigeminal sensory ganglia are formed from early-born and late-born neurons. Early-born neurons give rise to multiple classes of sensory neurons that express different ion channels. By contrast, late-born neurons are restricted in their fate and do not form chemosensory neurons expressing the ion channel TrpA1b. Accordingly, larvae lacking early-born neurons do not respond to the TrpA1b agonist allyl isothiocyanate. These results indicate that the multimodal specification and function of trigeminal sensory ganglia depends on the timing of neurogenesis.


Asunto(s)
Neurogénesis , Células Receptoras Sensoriales/citología , Ganglio del Trigémino/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Canales Iónicos/genética , Canales Iónicos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Modelos Neurológicos , Neurogénesis/genética , Neurogénesis/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1 , Factores de Tiempo , Canales de Potencial de Receptor Transitorio , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Blood ; 99(6): 2179-84, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11877295

RESUMEN

Similar to solid tumors, growth of leukemias may also be angiogenesis dependent. Furthermore, tyrosine kinase receptors specific to endothelial cells are expressed on certain subsets of leukemias. We have previously demonstrated the existence of a VEGF/VEGFR-2 autocrine loop on leukemic cells that supports their growth and migration. Here, we demonstrate that in response to leukemia-derived proangiogenic and proinflammatory cytokines such as basic fibroblast growth factor and IL-1, endothelial cells release increasing amounts of another vascular endothelial growth factor (VEGF) family member, VEGF-C. In turn, interaction of VEGF-C with its receptor VEGFR-3 (FLT-4) promotes leukemia survival and proliferation. We demonstrate in 2 cell lines and 5 FLT-4(+) leukemias that VEGF-C and a mutant form of the molecule that lacks the KDR-binding motif induce receptor phosphorylation, leukemia proliferation, and increased survival, as determined by increased Bcl-2/Bax ratios. Moreover, VEGF-C protected leukemic cells from the apoptotic effects of 3 chemotherapeutic agents. Because most leukemic cells release proangiogenic as well as proinflammatory cytokines, our data suggest that the generation of a novel paracrine angiogenic loop involving VEGF-C and FLT-4 may promote the survival of a subset of leukemias and protect them from chemotherapy-induced apoptosis. These results identify the VEGF-C/FLT-4 pathway as a novel therapeutic target for the treatment of subsets of acute leukemia.


Asunto(s)
Factores de Crecimiento Endotelial/fisiología , Leucemia/patología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores de Factores de Crecimiento/fisiología , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Citocinas/farmacología , Resistencia a Antineoplásicos , Factores de Crecimiento Endotelial/metabolismo , Factores de Crecimiento Endotelial/farmacología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Leucemia/metabolismo , Comunicación Paracrina/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factores de Crecimiento/metabolismo , Transducción de Señal , Células Tumorales Cultivadas/metabolismo , Cordón Umbilical , Factor C de Crecimiento Endotelial Vascular , Receptor 3 de Factores de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA