Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(10): 2433-2452.e7, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39305904

RESUMEN

Existing antibodies (Abs) have varied effects on humoral immunity during subsequent infections. Here, we leveraged in vivo systems that allow precise control of antigen-specific Abs and B cells to examine the impact of Ab dose, affinity, and specificity in directing B cell activation and differentiation. Abs competing with the B cell receptor (BCR) epitope showed affinity-dependent suppression. By contrast, Abs targeting a complementary epitope, not overlapping with the BCR, shifted B cell differentiation toward Ab-secreting cells. Such Abs allowed for potent germinal center (GC) responses to otherwise poorly immunogenic sites by promoting antigen capture and presentation by low-affinity B cells. These mechanisms jointly diversified the B cell repertoire by facilitating the recruitment of high- and low-affinity B cells into Ab-secreting cell, GC, and memory B cell fates. Incorporation of small amounts of monoclonal Abs into protein- or mRNA-based vaccines enhanced immunogenicity and facilitated sustained immune responses, with implications for vaccine design and our understanding of protective immunity.


Asunto(s)
Linfocitos B , Centro Germinal , Receptores de Antígenos de Linfocitos B , Animales , Ratones , Receptores de Antígenos de Linfocitos B/inmunología , Centro Germinal/inmunología , Linfocitos B/inmunología , Vacunas/inmunología , Activación de Linfocitos/inmunología , Diferenciación Celular/inmunología , Epítopos/inmunología , Ratones Endogámicos C57BL , Epítopos de Linfocito B/inmunología , Inmunogenicidad Vacunal , Anticuerpos Monoclonales/inmunología , Inmunidad Humoral/inmunología , Afinidad de Anticuerpos/inmunología , Células B de Memoria/inmunología
2.
EMBO J ; 43(20): 4786-4804, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39210146

RESUMEN

DNA i-motif structures are formed in the nuclei of human cells and are believed to provide critical genomic regulation. While the existence, abundance, and distribution of i-motif structures in human cells has been demonstrated and studied by immunofluorescent staining, and more recently NMR and CUT&Tag, the abundance and distribution of such structures in human genomic DNA have remained unclear. Here we utilise high-affinity i-motif immunoprecipitation followed by sequencing to map i-motifs in the purified genomic DNA of human MCF7, U2OS and HEK293T cells. Validated by biolayer interferometry and circular dichroism spectroscopy, our approach aimed to identify DNA sequences capable of i-motif formation on a genome-wide scale, revealing that such sequences are widely distributed throughout the human genome and are common in genes upregulated in G0/G1 cell cycle phases. Our findings provide experimental evidence for the widespread formation of i-motif structures in human genomic DNA and a foundational resource for future studies of their genomic, structural, and molecular roles.


Asunto(s)
ADN , Genoma Humano , Motivos de Nucleótidos , Humanos , ADN/genética , ADN/química , ADN/metabolismo , Células HEK293 , Conformación de Ácido Nucleico , Células MCF-7
3.
J Appl Clin Med Phys ; 25(5): e14336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664983

RESUMEN

PURPOSE: Ring and tandem (R&T) applicator digitization is currently performed at our institution by manually defining the extent of the applicators. Digitization can also be achieved using solid applicators: predefined, 3D models with geometric constraints. This study compares R&T digitization using manual and solid applicator methods through Failure Modes and Effects Analyses (FMEAs) and comparative time studies. We aim to assess the suitability of solid applicator method implementation for R&T cases METHODS: Six qualified medical physicists (QMPs) and two medical physics residents scored potential modes of failure of manual digitization in an FMEA as recommended by TG-100. Occurrence, severity, and detectability (OSD) values were averaged across respondents and then multiplied to form combined Risk Priority Numbers (RPNs) for analysis. Participants were trained to perform treatment planning using a developed solid applicator protocol and asked to score a second FMEA on the distinct process steps from the manual method. For both methods, participant digitization was timed. FMEA and time data were analyzed across methods and participant samples RESULTS: QMPs rated the RPNs of the current, manual method of digitization statistically lower than residents did. When comparing the unique FMEA steps between the two digitization methods, QMP respondents found no significant difference in RPN means. Residents, however, rated the solid applicator method as higher risk. Further, after the solid applicator method was performed twice by participants, the time to digitize plans was not significantly different from manual digitization CONCLUSIONS: This study indicates the non-inferiority of the solid applicator method to manual digitization in terms of risk, according to QMPs, and time, across all participants. Differences were found in FMEA evaluation and solid applicator technique adoption based on years of brachytherapy experience. Further practice with the solid applicator protocol is recommended because familiarity is expected to lower FMEA occurrence ratings and further reduce digitization times.


Asunto(s)
Braquiterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Braquiterapia/métodos , Braquiterapia/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Análisis de Modo y Efecto de Fallas en la Atención de la Salud , Neoplasias/radioterapia
4.
Int J Biol Macromol ; 254(Pt 1): 127596, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898250

RESUMEN

Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is an aggressive B-ALL malignancy associated with high rates of relapse and inferior survival rate. While targeted treatments against the cell surface proteins CD22 or CD19 have been transformative in the treatment of refractory B-ALL, patients may relapse due to antigen loss, necessitating targeting alternative antigens. Cytokine receptor-like factor 2 (CRLF2) is overexpressed in half of Ph-like ALL cases conferring chemoresistance and enhancement of leukemia cell survival. Therefore, targeting CRLF2 may reduce the likelihood of relapse associated with antigen loss. We developed a CRLF2-targeting single-chain variable fragment modified by the fragment crystallizable region (CRLF2 scFv-Fc) conjugated to a drug maytansinoid 1 (DM1)-DOPC liposomal conjugate, creating homogeneous CRLF2-targeted liposomes (CRLF2-DM1 LIP). Cellular association and internalization studies in a Ph-like ALL cell line, MHH-CALL-4, compared to its lentivirally transduced CRLF2-knockdown counterpart (KD-CALL-4) revealed excellent CRLF2-targeting efficiency of CRLF2-DM1 LIP. Moreover, CRLF2-DM1 LIP showed selective association and internalization ex vivo using Ph-like ALL patient-derived xenograft (PDX) cells with minimal reactivity with non-target cells. Cell apoptosis assays demonstrated the CRLF2-dependent potency of CRLF2-DM1 LIP in Ph-like ALL cell lines. This study is the first to highlight the therapeutic potential of a CRLF2-directed scFv-Fc-liposomal conjugate for targeting Ph-like ALL.


Asunto(s)
Inmunoconjugados , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Humanos , Fragmentos de Inmunoglobulinas , Liposomas/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Modelos Animales de Enfermedad , Inmunoconjugados/farmacología , Recurrencia
5.
Angew Chem Int Ed Engl ; 63(1): e202316458, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37984060

RESUMEN

Here we report a method to reorganize the core structure of aliphatic unsaturated nitrogen-containing substrates exploiting polyprotonation in superacid solutions. The superelectrophilic activation of N-isopropyl systems allows for the selective formal Csp3 -H activation/cyclization or homologation / functionalization of nitrogen-containing substrates. This study also reveals that this skeletal reorganization can be controlled through protonation interplay. The mechanism of this process involves an original sequence of C-N bond cleavage, isopropyl cation generation and subsequent C-N bond and C-C bond formation. This was demonstrated through in situ NMR analysis and labelling experiments, also confirmed by DFT calculations.

6.
Nucleic Acids Res ; 51(15): 7736-7748, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37439359

RESUMEN

Nucleic acids not only form the basis of heredity, but are increasingly a source of novel nano-structures, -devices and drugs. This has spurred the development of chemically modified alternatives (xeno nucleic acids (XNAs)) comprising chemical configurations not found in nature to extend their chemical and functional scope. XNAs can be evolved into ligands (XNA aptamers) that bind their targets with high affinity and specificity. However, detailed investigations into structural and functional aspects of XNA aptamers have been limited. Here we describe a detailed structure-function analysis of LYS-S8-19, a 1',5'-anhydrohexitol nucleic acid (HNA) aptamer to hen egg-white lysozyme (HEL). Mapping of the aptamer interaction interface with its cognate HEL target antigen revealed interaction epitopes, affinities, kinetics and hot-spots of binding energy similar to protein ligands such as anti-HEL-nanobodies. Truncation analysis and molecular dynamics (MD) simulations suggest that the HNA aptamer core motif folds into a novel and not previously observed HNA tertiary structure, comprising non-canonical hT-hA-hT/hT-hT-hT triplet and hG4-quadruplex structures, consistent with its recognition by two different G4-specific antibodies.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Ácidos Nucleicos , Ligandos , Aptámeros de Nucleótidos/química , Ácidos Nucleicos/química , Simulación de Dinámica Molecular , Técnica SELEX de Producción de Aptámeros
7.
Mol Ther ; 31(7): 1979-1993, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012705

RESUMEN

Success in the treatment of infants with spinal muscular atrophy (SMA) underscores the potential of vectors based on adeno-associated virus (AAV). However, a major obstacle to the full realization of this potential is pre-existing natural and therapy-induced anti-capsid humoral immunity. Structure-guided capsid engineering is one possible approach to surmounting this challenge but necessitates an understanding of capsid-antibody interactions at high molecular resolution. Currently, only mouse-derived monoclonal antibodies (mAbs) are available to structurally map these interactions, which presupposes that mouse and human-derived antibodies are functionally equivalent. In this study, we have characterized the polyclonal antibody responses of infants following AAV9-mediated gene therapy for SMA and recovered 35 anti-capsid mAbs from the abundance of switched-memory B (smB) cells present in these infants. For 21 of these mAbs, seven from each of three infants, we have undertaken functional and structural analysis measuring neutralization, affinities, and binding patterns by cryoelectron microscopy (cryo-EM). Four distinct patterns were observed akin to those reported for mouse-derived mAbs, but with early evidence of differing binding pattern preference and underlying molecular interactions. This is the first human and largest series of anti-capsid mAbs to have been comprehensively characterized and will prove to be powerful tools for basic discovery and applied purposes.


Asunto(s)
Anticuerpos Monoclonales , Cápside , Lactante , Humanos , Animales , Ratones , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/genética , Microscopía por Crioelectrón , Cápside/química , Proteínas de la Cápside/química , Dependovirus , Terapia Genética , Vectores Genéticos/genética
8.
Nat Commun ; 14(1): 687, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755042

RESUMEN

Emerging variants of concern (VOCs) are threatening to limit the effectiveness of SARS-CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells of convalescent patients using SARS-CoV-2 receptor binding domains carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and 5). Both antibodies broadly neutralize VOCs, exceeding the potency of the clinical monoclonal sotrovimab (S309) by orders of magnitude. They also provide prophylactic and therapeutic in vivo protection of female hACE2 mice against viral challenge. Our results indicate that exposure to SARS-CoV-2 induces antibodies that maintain broad neutralization against emerging VOCs using two unique strategies: either by targeting the divergent class 1 epitope in a manner resistant to VOCs (ACE2 mimicry, as illustrated by GAR05 and mAbs P2C-1F11/S2K14); or alternatively, by targeting rare and highly conserved epitopes, such as the new class 6 epitope identified here (as illustrated by GAR12). Our results provide guidance for next generation monoclonal antibody development and vaccine design.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Leucocitos Mononucleares , Anticuerpos Antivirales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Epítopos , Glicoproteína de la Espiga del Coronavirus/genética , Pruebas de Neutralización
9.
Nat Cancer ; 4(2): 165-180, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36806801

RESUMEN

Monoclonal antibodies are a growing class of targeted cancer therapeutics, characterized by exquisite specificity, long serum half-life, high affinity and immune effector functions. In this review, we outline key advances in the field with a particular focus on recent and emerging classes of engineered antibody therapeutic candidates, discuss molecular structure and mechanisms of action and provide updates on clinical development and practice.


Asunto(s)
Anticuerpos Monoclonales , Neoplasias , Humanos , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Neoplasias/tratamiento farmacológico , Radioinmunoterapia
10.
Clin Immunol ; 246: 109209, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539107

RESUMEN

Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.


Asunto(s)
COVID-19 , Humanos , Adulto , SARS-CoV-2 , Linfocitos T CD4-Positivos , Inmunidad Celular , Activación de Linfocitos , Anticuerpos Antivirales
11.
Immunol Cell Biol ; 101(2): 142-155, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36353774

RESUMEN

The long-term health consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are still being understood. The molecular and phenotypic properties of SARS-CoV-2 antigen-specific T cells suggest a dysfunctional profile that persists in convalescence in those who were severely ill. By contrast, the antigen-specific memory B-cell (MBC) population has not yet been analyzed to the same degree, but phenotypic analysis suggests differences following recovery from mild or severe coronavirus disease 2019 (COVID-19). Here, we performed single-cell molecular analysis of the SARS-CoV-2 receptor-binding domain (RBD)-specific MBC population in three patients after severe COVID-19 and four patients after mild/moderate COVID-19. We analyzed the transcriptomic and B-cell receptor repertoire profiles at ~2 months and ~4 months after symptom onset. Transcriptomic analysis revealed a higher level of tumor necrosis factor-alpha (TNF-α) signaling via nuclear factor-kappa B in the severe group, involving CD80, FOS, CD83 and TNFAIP3 genes that was maintained over time. We demonstrated the presence of two distinct activated MBCs subsets based on expression of CD80hi TNFAIP3hi and CD11chi CD95hi at the transcriptome level. Both groups revealed an increase in somatic hypermutation over time, indicating progressive evolution of humoral memory. This study revealed distinct molecular signatures of long-term RBD-specific MBCs in convalescence, indicating that the longevity of these cells may differ depending on acute COVID-19 severity.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Células B de Memoria , Convalecencia , Anticuerpos Antivirales
12.
Front Immunol ; 13: 1032911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544780

RESUMEN

Background: Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. Methods: We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Findings: Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Interpretation: Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.


Asunto(s)
Linfocitos T CD4-Positivos , COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Neutralizantes , Epítopos de Linfocito T
13.
Protein Eng Des Sel ; 352022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36336952

RESUMEN

The CRISPR genome editing technology holds great clinical potential for the treatment of monogenetic disorders such as sickle cell disease. The therapeutic in vivo application of the technology relies on targeted delivery methods of the Cas9 and gRNA complex to specific cells or tissues. However, such methods are currently limited to direct organ delivery, preventing clinical application. Here, we show that monoclonal antibodies can be employed to deliver the Cas9/gRNA complex directly into human cells via cell-surface receptors. Using the SpyCatcher/SpyTag system, we conjugated the Fab fragment of the therapeutic antibodies Trastuzumab and Pertuzumab directly to the Cas9 enzyme and observed HER2-specific uptake of the ribonucleoprotein in a human HER2 expressing cell line. Following cellular uptake in the presence of an endosomolytic peptide, modest gene editing was also observed. This finding provides a blueprint for the targeted delivery of the CRISPR technology into specific cells using monoclonal antibodies.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Humanos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Edición Génica , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo
14.
EBioMedicine ; 84: 104270, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36130476

RESUMEN

BACKGROUND: Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. The introduction of global vaccine programs has contributed to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, Omicron BA.1 emerged, with substantially altered genetic differences and clinical effects from other variants of concern. Shortly after dominating global spread in early 2022, BA.1 was supplanted by the genetically distinct Omicron lineage BA.2. A sub-lineage of BA.2, designated BA.5, presently has an outgrowth advantage over BA.2 and other BA.2 sub-lineages. Here we study the neutralisation of Omicron BA.1, BA.2 and BA.5 and pre-Omicron variants using a range of vaccine and convalescent sera and therapeutic monoclonal antibodies using a live virus neutralisation assay. Using primary nasopharyngeal swabs, we also tested the relative fitness of BA.5 compared to pre-Omicron and Omicron viral lineages in their ability to use the ACE2-TMPRSS2 pathway. METHODS: Using low passage clinical isolates of Clade A.2.2, Beta, Delta, BA.1, BA.2 and BA.5, we determined humoral neutralisation in vitro in vaccinated and convalescent cohorts, using concentrated human IgG pooled from thousands of plasma donors, and licensed monoclonal antibody therapies. We then determined infectivity to particle ratios in primary nasopharyngeal samples and expanded low passage isolates in a genetically engineered ACE2/TMPRSS2 cell line in the presence and absence of the TMPRSS2 inhibitor Nafamostat. FINDINGS: Peak responses to 3 doses of BNT162b2 vaccine were associated with a 9-fold reduction in neutralisation for Omicron lineages BA.1, BA.2 and BA.5. Concentrated pooled human IgG from convalescent and vaccinated donors and BNT162b2 vaccination with BA.1 breakthrough infections were associated with greater breadth of neutralisation, although the potency was still reduced 7-fold across all Omicron lineages. Testing of clinical grade antibodies revealed a 14.3-fold reduction using Evusheld and 16.8-fold reduction using Sotrovimab for the BA.5. Whilst the infectivity of BA.1 and BA.2 was attenuated in ACE2/TMPRSS2 entry, BA.5 was observed to be equivalent to that of an early 2020 circulating clade and had greater sensitivity to the TMPRSS2 inhibitor Nafamostat. INTERPRETATION: Observations support all Omicron variants to significantly escape neutralising antibodies across a range of vaccination and/or convalescent responses. Potency of therapeutic monoclonal antibodies is also reduced and differs across Omicron lineages. The key difference of BA.5 from other Omicron sub-variants is the reversion in tropism back to using the well-known ACE2-TMPRSS2 pathway, utilised efficiently by pre-Omicron lineages. Monitoring if these changes influence transmission and/or disease severity will be key for ongoing tracking and management of Omicron waves globally. FUNDING: This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT).


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Anticuerpos Antivirales/metabolismo , Antivirales , Australia , Vacuna BNT162 , Benzamidinas , COVID-19/terapia , Guanidinas , Humanos , Inmunización Pasiva , Inmunoglobulina G , Inmunoterapia , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tropismo , Sueroterapia para COVID-19
15.
Nature ; 608(7924): 757-765, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948641

RESUMEN

The notion that mobile units of nucleic acid known as transposable elements can operate as genomic controlling elements was put forward over six decades ago1,2. However, it was not until the advancement of genomic sequencing technologies that the abundance and repertoire of transposable elements were revealed, and they are now known to constitute up to two-thirds of mammalian genomes3,4. The presence of DNA regulatory regions including promoters, enhancers and transcription-factor-binding sites within transposable elements5-8 has led to the hypothesis that transposable elements have been co-opted to regulate mammalian gene expression and cell phenotype8-14. Mammalian transposable elements include recent acquisitions and ancient transposable elements that have been maintained in the genome over evolutionary time. The presence of ancient conserved transposable elements correlates positively with the likelihood of a regulatory function, but functional validation remains an essential step to identify transposable element insertions that have a positive effect on fitness. Here we show that CRISPR-Cas9-mediated deletion of a transposable element-namely the LINE-1 retrotransposon Lx9c11-in mice results in an exaggerated and lethal immune response to virus infection. Lx9c11 is critical for the neogenesis of a non-coding RNA (Lx9c11-RegoS) that regulates genes of the Schlafen family, reduces the hyperinflammatory phenotype and rescues lethality in virus-infected Lx9c11-/- mice. These findings provide evidence that a transposable element can control the immune system to favour host survival during virus infection.


Asunto(s)
Elementos Transponibles de ADN , Interacciones Microbiota-Huesped , Inmunidad , Retroelementos , Virosis , Animales , Sistemas CRISPR-Cas/genética , Elementos Transponibles de ADN/genética , Elementos Transponibles de ADN/inmunología , Evolución Molecular , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Inmunidad/genética , Ratones , ARN no Traducido/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Retroelementos/genética , Retroelementos/inmunología , Virosis/genética , Virosis/inmunología
16.
Proc Natl Acad Sci U S A ; 119(28): e2123212119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867757

RESUMEN

Humans lack the capacity to produce the Galα1-3Galß1-4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development.


Asunto(s)
Anafilaxia , Anticuerpos , Hipersensibilidad a los Alimentos , Cadenas Pesadas de Inmunoglobulina , Región Variable de Inmunoglobulina , Enfermedades por Picaduras de Garrapatas , Trisacáridos , Anafilaxia/inmunología , Animales , Anticuerpos/química , Anticuerpos/genética , Formación de Anticuerpos/genética , Complejo Antígeno-Anticuerpo/química , Cristalografía por Rayos X , Hipersensibilidad a los Alimentos/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/inmunología , Ratones , Ratones Noqueados , Biblioteca de Péptidos , Conformación Proteica , Enfermedades por Picaduras de Garrapatas/inmunología , Trisacáridos/genética , Trisacáridos/inmunología
17.
Nat Microbiol ; 7(6): 896-908, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637329

RESUMEN

Genetically distinct variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged since the start of the COVID-19 pandemic. Over this period, we developed a rapid platform (R-20) for viral isolation and characterization using primary remnant diagnostic swabs. This, combined with quarantine testing and genomics surveillance, enabled the rapid isolation and characterization of all major SARS-CoV-2 variants circulating in Australia in 2021. Our platform facilitated viral variant isolation, rapid resolution of variant fitness using nasopharyngeal swabs and ranking of evasion of neutralizing antibodies. In late 2021, variant of concern Omicron (B1.1.529) emerged. Using our platform, we detected and characterized SARS-CoV-2 VOC Omicron. We show that Omicron effectively evades neutralization antibodies and has a different entry route that is TMPRSS2-independent. Our low-cost platform is available to all and can detect all variants of SARS-CoV-2 studied so far, with the main limitation being that our platform still requires appropriate biocontainment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Australia , COVID-19/diagnóstico , Humanos , Pandemias , SARS-CoV-2/genética
18.
Eur J Immunol ; 52(6): 970-977, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35253229

RESUMEN

Effective vaccines and monoclonal antibodies have been developed against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the appearance of virus variants with higher transmissibility and pathogenicity is a major concern because of their potential to escape vaccines and clinically approved SARS-CoV-2- antibodies. Here, we use flow cytometry-based binding and pseudotyped SARS-CoV-2 neutralization assays to determine the efficacy of boost immunization and therapeutic antibodies to neutralize the dominant Omicron variant. We provide compelling evidence that the third vaccination with BNT162b2 increases the amount of neutralizing serum antibodies against Delta and Omicron variants, albeit to a lower degree when compared to the parental Wuhan strain. Therefore, a third vaccination is warranted to increase titers of protective serum antibodies, especially in the case of the Omicron variant. We also found that most clinically approved and otherwise potent therapeutic antibodies against the Delta variant failed to recognize and neutralize the Omicron variant. In contrast, some antibodies under preclinical development potentially neutralized the Omicron variant. Our studies also support using a flow cytometry-based antibody binding assay to rapidly monitor therapeutic candidates and serum titers against emerging SARS-CoV-2 variants.


Asunto(s)
Antineoplásicos Inmunológicos , COVID-19 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , Vacunación
19.
J Am Heart Assoc ; 11(7): e023021, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35348002

RESUMEN

Background Platelet-derived growth factor is a major regulator of the vascular remodeling associated with pulmonary arterial hypertension. We previously showed that protein widely 1 (PW1+) vascular progenitor cells participate in early vessel neomuscularization during experimental pulmonary hypertension (PH) and we addressed the role of the platelet-derived growth factor receptor type α (PDGFRα) pathway in progenitor cell-dependent vascular remodeling and in PH development. Methods and Results Remodeled pulmonary arteries from patients with idiopathic pulmonary arterial hypertension showed an increased number of perivascular and vascular PW1+ cells expressing PDGFRα. PW1nLacZ reporter mice were used to follow the fate of pulmonary PW1+ progenitor cells in a model of chronic hypoxia-induced PH development. Under chronic hypoxia, PDGFRα inhibition prevented the increase in PW1+ progenitor cell proliferation and differentiation into vascular smooth muscle cells and reduced pulmonary vessel neomuscularization, but did not prevent an increased right ventricular systolic pressure or the development of right ventricular hypertrophy. Conversely, constitutive PDGFRα activation led to neomuscularization via PW1+ progenitor cell differentiation into new smooth muscle cells and to PH development in male mice without fibrosis. In vitro, PW1+ progenitor cell proliferation, but not differentiation, was dependent on PDGFRα activity. Conclusions These results demonstrate a major role of PDGFRα signaling in progenitor cell-dependent lung vessel neomuscularization and vascular remodeling contributing to PH development, including in idiopathic pulmonary arterial hypertension patients. Our findings suggest that PDGFRα blockers may offer a therapeutic add-on strategy to combine with current pulmonary arterial hypertension treatments to reduce vascular remodeling. Furthermore, our study highlights constitutive PDGFRα activation as a novel experimental PH model.


Asunto(s)
Hipertensión Pulmonar , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Proliferación Celular , Células Cultivadas , Humanos , Hipertensión Pulmonar/metabolismo , Hipoxia , Pulmón , Masculino , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Remodelación Vascular
20.
Neuropeptides ; 92: 102231, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35180645

RESUMEN

Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) form the evolutionarily conserved pancreatic polypeptide family. While the fold is widely utilized in nature, crystal structures remain elusive, particularly for the human forms, with only the structure of a distant avian form of PP reported. Here we utilize a crystallization chaperone (antibody Fab fragment), specifically recognizing the amidated peptide termini, to solve the structures of human NPY and human PYY. Intriguingly, and despite limited sequence identity (~50%), the structure of human PYY closely resembles that of avian PP, highlighting the broad structural conservation of the fold throughout evolution. Specifically, the PYY structure is characterized by a C-terminal amidated α-helix, preceded by a backfolded poly-proline N-terminus, with the termini in close proximity to each other. In contrast, in the structure of human NPY the N-terminal component is disordered, while the helical component of the peptide is observed in a four-helix bundle type arrangement, consistent with a propensity for multimerization suggested by NMR studies.


Asunto(s)
Neuropéptido Y , Péptido YY , Humanos , Polipéptido Pancreático , Receptores de Neuropéptido Y
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA