Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Clin Med ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892879

RESUMEN

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating multisystemic disease characterized by a complex, incompletely understood etiology. Methods: To facilitate future clinical and translational research, a multicenter German ME/CFS registry (MECFS-R) was established to collect comprehensive, longitudinal, clinical, epidemiological, and laboratory data from adults, adolescents, and children in a web-based multilayer-secured database. Results: Here, we present the research protocol and first results of a pilot cohort of 174 ME/CFS patients diagnosed at two specialized tertiary fatigue centers, including 130 (74.7%) adults (mean age 38.4; SD 12.6) and 43 (25.3%) pediatric patients (mean age 15.5; SD 4.2). A viral trigger was identified in 160/174 (92.0%) cases, with SARS-CoV-2 in almost half of them. Patients exhibited severe functional and social impairment, as reflected by a median Bell Score of 30.0 (IQR 30.0 to 40.0) and a poor health-related quality of life assessed with the Short Form-36 health survey, resulting in a mean score of 40.4 (SD 20.6) for physical function and 59.1 (SD 18.8) for mental health. Conclusions: The MECFS-R provides important clinical information on ME/CFS to research and healthcare institutions. Paired with a multicenter biobank, it facilitates research on pathogenesis, diagnostic markers, and treatment options. Trial registration: ClinicalTrials.gov NCT05778006.

2.
Vaccines (Basel) ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543942

RESUMEN

BACKGROUND: Hemodialysis patients have reduced serologic immunity after SARS-CoV-2 vaccination compared to the general population and an increased risk of morbidity and mortality when exposed to SARS-CoV-2. METHODS: Sixty-six hemodialysis patients immunized four times with the original SARS-CoV-2 vaccines (BNT162b2, mRNA-1273) either received a booster with the adapted Comirnaty Original/Omicron BA.4-5 vaccine 8.3 months after the fourth vaccination and/or experienced a breakthrough infection. Two months before and four weeks after the fifth vaccination, the live-virus neutralization capacities of Omicron variants BA.5, BQ.1.1, and XBB.1.5 were determined, as well as neutralizing and quantitative anti-SARS-CoV-2 spike-specific IgG antibodies. RESULTS: Four weeks after the fifth vaccination with the adapted vaccine, significantly increased neutralizing antibodies and the neutralization of Omicron variants BA.5, BQ.1.1, and XBB.1.5 were observed. The increase was significantly higher than after the fourth vaccination for variants BQ.1.1 and BA.5. Of all analyzed variants, BA.5 was neutralized best after the fifth vaccination. We did not see a difference in humoral immunity between the group with an infection and the group with a vaccination as a fifth spike exposure. Fivefold-vaccinated patients with a breakthrough infection showed a significantly higher neutralization capacity of XBB.1.5. CONCLUSION: A fifth SARS-CoV-2 vaccination with the adapted vaccine improves both wild-type specific antibody titers and the neutralizing capacity of the current Omicron variants BA.5, BQ.1.1, and XBB.1.5 in hemodialysis patients. Additional booster vaccinations with adapted vaccines will likely improve immunity towards current and original SARS-CoV-2 variants and are, therefore, recommended in hemodialysis patients. Further longitudinal studies must show the extent to which this booster vaccination avoids a breakthrough infection.

3.
J Clin Virol ; 170: 105622, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38091664

RESUMEN

BACKGROUND: SARS-CoV-2 variants of concern (VOC) may result in breakthrough infections (BTIs) in vaccinated individuals. The aim of this study was to investigate the effects of full primary (two-dose) COVID-19 vaccination with wild-type-based SARS-CoV-2 vaccines on symptoms and immunogenicity of SARS-CoV-2 VOC BTIs. METHODS: In a longitudinal multicenter controlled cohort study in Bavaria, Germany, COVID-19 vaccinated and unvaccinated non-hospitalized individuals were prospectively enrolled within 14 days of a PCR-confirmed SARS-CoV-2 infection. Individuals were visited weekly up to 4 times, performing a structured record of medical data and viral load assessment. SARS-CoV-2-specific antibody response was characterized by anti-spike-(S)- and anti-nucleocapsid-(N)-antibody concentrations, anti-S-IgG avidity and neutralization capacity. RESULTS: A total of 300 individuals (212 BTIs, 88 non-BTIs) were included with VOC Alpha or Delta SARS-CoV-2 infections. Full primary COVID-19 vaccination provided a significant effectiveness against five symptoms (relative risk reduction): fever (33 %), cough (21 %), dysgeusia (22 %), dizziness (52 %) and nausea/vomiting (48 %). Full primary vaccinated individuals showed significantly higher 50 % inhibitory concentration (IC50) values against the infecting VOC compared to unvaccinated individuals at week 1 (269 vs. 56, respectively), and weeks 5-7 (1,917 vs. 932, respectively) with significantly higher relative anti-S-IgG avidity (78% vs. 27 % at week 4, respectively). CONCLUSIONS: Full primary COVID-19 vaccination reduced symptom frequencies in non-hospitalized individuals with BTIs and elicited a more rapid and longer lasting neutralization capacity against the infecting VOC compared to unvaccinated individuals. These results support the recommendation to offer at least full primary vaccination to all adults to reduce disease severity caused by immune escape-variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , COVID-19/prevención & control , Infección Irruptiva , Estudios de Cohortes , Estudios Prospectivos , SARS-CoV-2 , Anticuerpos Antivirales , Inmunoglobulina G , Vacunación
4.
Clin Kidney J ; 16(12): 2447-2460, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38046025

RESUMEN

Background: Individuals on haemodialysis (HD) are more vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than the general population due to end-stage kidney disease-induced immunosuppression. Methods: A total of 26 HD patients experiencing SARS-CoV-2 infection after a third vaccination were matched 1:1 with 26 of 92 SARS-CoV-2-naïve patients by age, sex, dialysis vintage and immunosuppressive drugs receiving a fourth vaccination with a messenger RNA-based vaccine. A competitive surrogate neutralization assay was used to monitor vaccination success. To determine infection neutralization titres, Vero-E6 cells were infected with SARS-CoV-2 variants of concern (VoCs), Omicron sublineage BA.1, BA.5 and BQ.1.1. The 50% inhibitory concentration (IC50, serum dilution factor 1:x) was determined before, 4 weeks after and 6 months after the fourth vaccination. Results: A total of 52 HD patients received four coronavirus disease 2019 (COVID-19) vaccinations and were followed up for a median of 6.3 months. Patient characteristics did not differ between the matched cohorts. Patients without a SARS-CoV-2 infection had a significant reduction of real virus neutralization capacity for all Omicron sublineages after 6 months (P < .001 each). Those patients with a virus infection did not experience a reduction in real virus neutralization capacity after 6 months. Compared with the other Omicron VoC, the BQ.1.1 sublineage had the lowest virus neutralization capacity. Conclusions: SARS-CoV-2-naïve HD patients had significantly decreased virus neutralization capacity 6 months after the fourth vaccination, whereas patients with a SARS-CoV-2 infection had no change in neutralization capacity. This was independent of age, sex, dialysis vintage and immunosuppression. Therefore, in infection-naïve HD patients a fifth COVID-19 vaccination might be reasonable 6 months after the fourth vaccination.

5.
Microbiol Spectr ; 11(6): e0176823, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37831440

RESUMEN

IMPORTANCE: The results from this study demonstrate the usefulness of a second-generation rapid antigen test for early detection of infection with the SARS-CoV-2 Omicron variant of concern (VoC) and reveal a higher sensitivity to detect immune escape Omicron VoCs compared to a first-generation rapid antigen test (89.4% vs 83.7%) in the high-risk group of healthcare workers.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Personal de Salud
6.
Front Immunol ; 14: 1172477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063863

RESUMEN

Background: Kidney transplant recipients (KTRs) are at high risk for a severe course of coronavirus disease 2019 (COVID-19); thus, effective vaccination is critical. However, the achievement of protective immunogenicity is hampered by immunosuppressive therapies. We assessed cellular and humoral immunity and breakthrough infection rates in KTRs vaccinated with homologous and heterologous COVID-19 vaccination regimens. Method: We performed a comparative in-depth analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell responses using multiplex Fluorospot assays and SARS-CoV-2-specific neutralizing antibodies (NAbs) between three-times homologously (n = 18) and heterologously (n = 8) vaccinated KTRs. Results: We detected SARS-CoV-2-reactive T cells in 100% of KTRs upon third vaccination, with comparable frequencies, T-cell expression profiles, and relative interferon γ and interleukin 2 production per single cell between homologously and heterologously vaccinated KTRs. SARS-CoV-2-specific NAb positivity rates were significantly higher in heterologously (87.5%) compared to homologously vaccinated (50.0%) KTRs (P < 0.0001), whereas the magnitudes of NAb titers were comparable between both subcohorts after third vaccination. SARS-CoV-2 breakthrough infections occurred in equal numbers in homologously (38.9%) and heterologously (37.5%) vaccinated KTRs with mild-to-moderate courses of COVID-19. Conclusion: Our data support a more comprehensive assessment of not only humoral but also cellular SARS-CoV-2-specific immunity in KTRs to provide an in-depth understanding about the COVID-19 vaccine-induced immune response in a transplant setting.


Asunto(s)
COVID-19 , Trasplante de Riñón , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunidad Humoral , SARS-CoV-2 , Progresión de la Enfermedad
7.
Microbiol Spectr ; 11(1): e0316522, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36622140

RESUMEN

The ability of antibodies to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important correlate of protection. For routine evaluation of protection, however, a simple and cost-efficient anti-SARS-CoV-2 serological assay predictive of serum neutralizing activity is needed. We analyzed clinical epidemiological data and blood samples from two cohorts of health care workers in Barcelona and Munich to compare several immunological readouts for evaluating antibody levels that could be surrogates of neutralizing activity. We measured IgG levels against SARS-CoV-2 spike protein (S), its S2 subunit, the S1 receptor binding domain (RBD), and the full length and C terminus of nucleocapsid (N) protein by Luminex, and against RBD by enzyme-linked immunosorbent assay (ELISA), and assessed those as predictors of plasma surrogate-neutralizing activity measured by a flow cytometry assay. In addition, we determined the clinical and demographic factors affecting plasma surrogate-neutralizing capacity. Both cohorts showed a high positive correlation between IgG levels to S antigen, especially to RBD, and the levels of plasma surrogate-neutralizing activity, suggesting RBD IgG as a good correlate of plasma neutralizing activity. Symptomatic infection, with symptoms such as loss of taste, dyspnea, rigors, fever and fatigue, was positively associated with anti-RBD IgG positivity by ELISA and Luminex, and with plasma surrogate-neutralizing activity. Our serological assays allow for the prediction of serum neutralization activity without the cost, hazards, time, and expertise needed for surrogate or conventional neutralization assays. Once a cutoff is established, these relatively simple high-throughput antibody assays will provide a fast and cost-effective method of assessing levels of protection from SARS-CoV-2 infection. IMPORTANCE Neutralizing antibody titers are the best correlate of protection against SARS-CoV-2. However, current tests to measure plasma or serum neutralizing activity do not allow high-throughput screening at the population level. Serological tests could be an alternative if they are proved to be good predictors of plasma neutralizing activity. In this study, we analyzed the SARS-CoV-2 serological profiles of two cohorts of health care workers by applying Luminex and ELISA in-house serological assays. Correlations of both serological tests were assessed between them and with a flow cytometry assay to determine plasma surrogate-neutralizing activity. Both assays showed a high positive correlation between IgG levels to S antigens, especially RBD, and the levels of plasma surrogate-neutralizing activity. This result suggests IgG to RBD as a good correlate of plasma surrogate-neutralizing activity and indicates that serology of IgG to RBD could be used to assess levels of protection from SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Neutralizantes , Personal de Salud , Inmunoglobulina G , Anticuerpos Antivirales
8.
Anal Bioanal Chem ; 415(3): 391-404, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36346456

RESUMEN

The SARS-CoV-2 pandemic has shown the importance of rapid and comprehensive diagnostic tools. While there are numerous rapid antigen tests available, rapid serological assays for the detection of neutralizing antibodies are and will be needed to determine not only the amount of antibodies formed after infection or vaccination but also their neutralizing potential, preventing the cell entry of SARS-CoV-2. Current active-virus neutralization assays require biosafety level 3 facilities, while virus-free surrogate assays are more versatile in applications, but still take typically several hours until results are available. To overcome these disadvantages, we developed a competitive chemiluminescence immunoassay that enables the detection of neutralizing SARS-CoV-2 antibodies within 7 min. The neutralizing antibodies bind to the viral receptor binding domain (RBD) and inhibit the binding to the human angiotensin-converting enzyme 2 (ACE2) receptor. This competitive binding inhibition test was characterized with a set of 80 samples, which could all be classified correctly. The assay results favorably compare to those obtained with a more time-intensive ELISA-based neutralization test and a commercial surrogate neutralization assay. Our test could further be used to detect individuals with a high total IgG antibody titer, but only a low neutralizing titer, as well as for monitoring neutralizing antibodies after vaccinations. This effective performance in SARS-CoV-2 seromonitoring delineates the potential for the test to be adapted to other diseases in the future.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo , Luminiscencia , Automatización de Laboratorios
9.
EBioMedicine ; 85: 104294, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36206622

RESUMEN

BACKGROUND: Vaccines are an important means to overcome the SARS-CoV-2 pandemic. They induce specific antibody and T-cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 180 days after homologous or heterologous vaccination with either ChAdOx1-nCoV-19 (ChAd) or BNT162b2 (BNT) or both. METHODS: Various tests were used to determine the humoral and cellular immune response. To quantify the antibody levels, we used the surrogate neutralization (sVNT) assay from YHLO, which we augmented with pseudo- and real virus neutralization tests (pVNT and rVNT). Antibody avidity was measured by a modified ELISA. To determine cellular reactivity, we used an IFN-γ Elispot, IFN-γ/IL Flurospot, and intracellular cytokine staining. FINDINGS: Antibody responses significantly waned after vaccination, irrespective of the regimen. The capacity to neutralize SARS-CoV-2 - including variants of concern such as Delta or Omicron - was superior after heterologous compared to homologous BNT vaccination, both of which resulted in longer-lasting humoral immunity than homologous ChAd immunization. All vaccination regimens induced stable, polyfunctional T-cell responses. INTERPRETATION: These findings demonstrate that heterologous vaccination with ChAd and BNT is a potent alternative to induce humoral and cellular immune protection in comparison to the homologous vaccination regimens. FUNDING: The study was funded by the German Centre for Infection Research (DZIF), the European Union's "Horizon 2020 Research and Innovation Programme" under grant agreement No. 101037867 (VACCELERATE), the "Bayerisches Staatsministerium für Wissenschaft und Kunst" for the CoVaKo-2021 and the For-COVID projects and the Helmholtz Association via the collaborative research program "CoViPa". Further support was obtained from the Federal Ministry of Education and Science (BMBF) through the "Netzwerk Universitätsmedizin", project "B-Fast" and "Cov-Immune". KS is supported by the German Federal Ministry of Education and Research (BMBF, 01KI2013) and the Else Kröner-Stiftung (2020_EKEA.127).


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Vacuna BNT162 , COVID-19/prevención & control , Vacunación , Inmunidad Celular , Anticuerpos Antivirales
10.
Vaccines (Basel) ; 10(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36016216

RESUMEN

Hemodialysis patients are exposed to a markedly increased risk when infected with SARS-CoV-2. To date, it is unclear if hemodialysis patients benefit from four vaccinations. A total of 142 hemodialysis patients received four COVID-19 vaccinations until March 2022. RDB binding antibody titers were determined in a competitive surrogate neutralization assay. Vero-E6 cells were infected with SARS-CoV-2 variants of concern (VoC), Delta (B.1.617.2), or Omicron (B.1.1.529, sub-lineage BA.1) to determine serum infection neutralization capacity. Four weeks after the fourth vaccination, serum infection neutralization capacity significantly increased from a 50% inhibitory concentration (IC50, serum dilution factor 1:x) of 247.0 (46.3−1560.8) to 2560.0 (1174.0−2560.0) for the Delta VoC, and from 37.5 (20.0−198.8) to 668.5 (182.2−2560.0) for the Omicron VoC (each p < 0.001) compared to four months after the third vaccination. A significant increase in the neutralization capacity was even observed for patients with high antibody titers after three vaccinations (p < 0.001). Ten patients with SARS-CoV-2 breakthrough infection after the first blood sampling had by trend lower prior neutralization capacity for Omicron (p = 0.051). Our findings suggest that hemodialysis patients benefit from a fourth vaccination in particular in the light of the highly infectious SARS-CoV-2 Omicron-variants. A routinely applied four-time vaccination seems to broaden immunity against variants and would be recommended in hemodialysis patients.

11.
Nat Commun ; 13(1): 153, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013191

RESUMEN

Anti-viral immunity continuously declines over time after SARS-CoV-2 infection. Here, we characterize the dynamics of anti-viral immunity during long-term follow-up and after BNT162b2 mRNA-vaccination in convalescents after asymptomatic or mild SARS-CoV-2 infection. Virus-specific and virus-neutralizing antibody titers rapidly declined in convalescents over 9 months after infection, whereas virus-specific cytokine-producing polyfunctional T cells persisted, among which IL-2-producing T cells correlated with virus-neutralizing antibody titers. Among convalescents, 5% of individuals failed to mount long-lasting immunity after infection and showed a delayed response to vaccination compared to 1% of naïve vaccinees, but successfully responded to prime/boost vaccination. During the follow-up period, 8% of convalescents showed a selective increase in virus-neutralizing antibody titers without accompanying increased frequencies of circulating SARS-CoV-2-specific T cells. The same convalescents, however, responded to vaccination with simultaneous increase in antibody and T cell immunity revealing the strength of mRNA-vaccination to increase virus-specific immunity in convalescents.


Asunto(s)
Vacuna BNT162/inmunología , COVID-19/inmunología , Convalecencia , Nucleocápside/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , COVID-19/virología , Citocinas/inmunología , Citocinas/metabolismo , Citometría de Flujo/métodos , Estudios de Seguimiento , Humanos , Inmunoglobulina G/inmunología , Interleucina-2/inmunología , Interleucina-2/metabolismo , Cinética , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Factores de Tiempo , Vacunación/métodos
12.
Nat Med ; 28(3): 496-503, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090165

RESUMEN

Infection-neutralizing antibody responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529), which is rapidly spreading worldwide. Here we report neutralizing antibody dynamics in a longitudinal cohort of coronavirus disease 2019 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying SARS-CoV-2 spike protein antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.


Asunto(s)
Vacuna BNT162 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Humanos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA