Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202402715, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135270

RESUMEN

Fragile X mental retardation protein (FMRP), an RNA binding protein (RBP), is aberrantly hyper-expressed in human tumors and plays an essential role in tumor invasion, metastasis and immune evasion. However, there is no small-molecule inhibitor for FMRP so far. In this study, we developed the first FMRP-targeting degrader based on PROteolysis TArgeting Chimera (PROTAC) technology and constructed a heterobifunctional PROTAC through linking a FMRP-targeting G-quadruplex RNA (sc1) to a von Hippel-Lindau (VHL)-targeting ligand peptide (named as sc1-VHLL). Sc1-VHLL specifically degraded endogenous FMRP via ubiquitination pathway in both mouse and human cancer cells. The FMRP degradation significantly changed the secretion pattern of cancer cells, resulting in higher expression of pro-inflammatory cytokine and smaller amounts of immunomodulatory contents. Furthermore, sc1-VHLL, when encapsulated into ionizable liposome nanoparticles (LNP) efficiently targeted tumor site and degraded FMRP in cancer cells. In CT26 tumor-bearing mouse model, FMRP degradation within tumors substantially promoted the infiltration of lymphocytes and CD8 T cells and reduced the proportion of Treg cells, reshaping the proinflammatory tumor microenvironment and accordingly transforming cold tumor into hot tumor. When combined with immune checkpoint blockade (ICB) therapy, sc1-VHLL based treatment remarkably inhibited the tumor growth.

2.
J Am Chem Soc ; 146(23): 15815-15824, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832857

RESUMEN

Ribonuclease targeting chimera (RIBOTAC) represents an emerging strategy for targeted therapy. However, RIBOTAC that is selectively activated by bio-orthogonal or cell-specific triggers has not been explored. We developed a strategy of inducible RIBOTAC (iRIBOTAC) that enables on-demand degradation of G-quadruplex (G4) RNAs for precision cancer therapy. iRIBOTAC is designed by coupling an RNA G4 binder with a caged ribonuclease recruiter, which can be decaged by a bio-orthogonal reaction, tumor-specific enzyme, or metabolite. A bivalent G4 binder is engineered by conjugating a near-infrared (NIR) fluorescence G4 ligand to a noncompetitive G4 ligand, conferring fluorescence activation on binding G4s with synergistically enhanced affinity. iRIBOTAC is demonstrated to greatly knockdown G4 RNAs upon activation under bio-orthogonal or cell-specific stimulus, with dysregulation of gene expressions involving cell killing, channel regulator activity, and metabolism as revealed by RNA sequencing. This strategy also shows a crucial effect on cell fate with remarkable biochemical hallmarks of apoptosis. Mice model studies demonstrate that iRIBOTAC allows selective imaging and growth suppression of tumors with bio-orthogonal and tumor-specific controls, highlighting G4 RNA targeting and inducible silencing as a valuable RIBOTAC paradigm for cancer therapy.


Asunto(s)
G-Cuádruplex , ARN Mensajero , Ribonucleasas , Humanos , Animales , Ratones , Ribonucleasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Silenciador del Gen , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/genética
3.
Nat Commun ; 15(1): 4363, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778087

RESUMEN

Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.


Asunto(s)
Neoplasias de la Mama , Microfluídica , Medicina de Precisión , Ensayos Antitumor por Modelo de Xenoinjerto , Medicina de Precisión/métodos , Humanos , Animales , Ratones , Femenino , Línea Celular Tumoral , Microfluídica/métodos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
4.
Support Care Cancer ; 32(5): 286, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613655

RESUMEN

AIM: This study aimed to explore the characteristics of stigma in postoperative oral cancer patients to provide a reference for the formulation of targeted intervention measures. METHODS: A qualitative study was conducted on 25 postoperative oral cancer patients in a tertiary A hospital in Hunan, China, from March to July 2021. Semi-structured face-to-face interviews focused on experiences of stigma were performed. The interview data was analyzed using the NVivo V.12 software based on the reflexive intuitive thematic analysis method. The paper complies with the COREQ. RESULTS: The stigma experience of postoperative oral cancer patients can be divided into 3 themes: (1) triggers (impaired appearance and oral function and psycho-social pressure); (2) forms (overall isolation, unpleasant feeling of inferiority, and unpleasant social discrimination); (3) coping strategies (positive psychological adjustment, seeking social support and coming out of the unpleasant shadows). CONCLUSION: Postoperative oral cancer patients clearly articulated that stigma was present in their lives and they experienced multiple forms of stigma. Further work is needed to increase education and awareness about oral cancer to guide them to take positive coping and reduce stigma.


Asunto(s)
Neoplasias de la Boca , Humanos , Neoplasias de la Boca/cirugía , Estigma Social , Investigación Cualitativa , China , Habilidades de Afrontamiento
5.
J Colloid Interface Sci ; 667: 1-11, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38615618

RESUMEN

A major challenge in combining cancer immunotherapy is the efficient delivery of multiple types of immunological stimulators to elicit a robust anti-tumor immune response and reprogram the immunosuppressive tumor microenvironment (TME). Here, we developed a DNA nanodevice that was generated by precisely assembling three types of immunological stimulators. The doxorubicin (Dox) component induced immunogenic cell death (ICD) in tumor cells and enhanced phagocytosis of antigen-presenting cells (APCs). Exogenous double-stranded DNA (dsDNA) could act as a molecular adjuvant to activate the stimulator of interferon genes (STING) signaling in APCs by engulfing dying tumor cells. Interleukin (IL)-12 and small hairpin programmed cell death-ligand 1 (shPD-L1) transcription templates were designed to regulate TME. Additionally, for targeted drug delivery, multiple cyclo[Arg-Gly-Asp-(d-Phe)-Cys] (cRGD) peptide units on DNA origami were employed. The incorporation of disulfide bonds allowed the release of multiple modules in response to intracellular glutathione (GSH) in tumors. The nanodevice promoted the infiltration of CD8+ and CD4+ cells into the tumor and generated a highly inflamed TME, thereby enhancing the effectiveness of cancer immunotherapy. Our research results indicate that the nanodevice we constructed can effectively inhibit tumor growth and prevent lung metastasis without obvious systemic toxicity, providing a promising strategy for cancer combination treatment.


Asunto(s)
ADN , Doxorrubicina , Inmunoterapia , ADN/química , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Ratones , Animales , Microambiente Tumoral/efectos de los fármacos , Humanos , Sistemas de Liberación de Medicamentos , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Línea Celular Tumoral , Células Presentadoras de Antígenos/inmunología , Nanopartículas/química , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación , Tamaño de la Partícula
6.
Adv Sci (Weinh) ; 11(21): e2400888, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38638003

RESUMEN

Circulating tumor cells (CTCs) shed from primary tumors must overcome the cytotoxicity of immune cells, particularly natural killer (NK) cells, to cause metastasis. The tumor microenvironment (TME) protects tumor cells from the cytotoxicity of immune cells, which is partially executed by cancer-associated mesenchymal stromal cells (MSCs). However, the mechanisms by which MSCs influence the NK resistance of CTCs remain poorly understood. This study demonstrates that MSCs enhance the NK resistance of cancer cells in a gap junction-dependent manner, thereby promoting the survival and metastatic seeding of CTCs in immunocompromised mice. Tumor cells crosstalk with MSCs through an intercellular cGAS-cGAMP-STING signaling loop, leading to increased production of interferon-ß (IFNß) by MSCs. IFNß reversely enhances the type I IFN (IFN-I) signaling in tumor cells and hence the expression of human leukocyte antigen class I (HLA-I) on the cell surface, protecting the tumor cells from NK cytotoxicity. Disruption of this loop reverses NK sensitivity in tumor cells and decreases tumor metastasis. Moreover, there are positive correlations between IFN-I signaling, HLA-I expression, and NK tolerance in human tumor samples. Thus, the NK-resistant signaling loop between tumor cells and MSCs may serve as a novel therapeutic target.


Asunto(s)
Interferón beta , Células Asesinas Naturales , Células Madre Mesenquimatosas , Células Neoplásicas Circulantes , Nucleotidiltransferasas , Transducción de Señal , Microambiente Tumoral , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Animales , Células Asesinas Naturales/inmunología , Ratones , Interferón beta/metabolismo , Interferón beta/inmunología , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Humanos , Células Neoplásicas Circulantes/inmunología , Células Neoplásicas Circulantes/metabolismo , Microambiente Tumoral/inmunología , Proteínas de la Membrana/metabolismo , Modelos Animales de Enfermedad , Línea Celular Tumoral
8.
Biol Trace Elem Res ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38514508

RESUMEN

Despite the robust correlation between metabolic disorders and heavy metals, there has been limited research on the associations between nickel levels and non-alcoholic fatty liver disease (NAFLD) as well as liver fibrosis. This study aimed to examine the associations among urinary nickel, NAFLD, and liver fibrosis. The data utilized in this study were obtained from the National Health and Nutrition Examination Survey 2017-2020. A comprehensive screening process was conducted, resulting in the inclusion of a total of 3169 American adults in the analysis. The measurement of urinary nickel was conducted through inductively coupled-plasma mass spectrometry. Vibration-controlled transient elastography was employed to assess the controlled attenuation parameter and liver stiffness measurement as indicators for NAFLD and liver fibrosis, respectively. Multivariable logistic regression models were employed to evaluate the associations among urinary nickel, NAFLD, and liver fibrosis. Restricted cubic splines were employed to explored the nonlinear associations. After adjusting for all covariates, the correlation between the highest quartile of urinary nickel and NAFLD was found to be significant (OR = 1.65; 95% CI, 1.19-2.27). Subgroup analysis revealed that the correlation was significant only in men. A significant association occurred between the second quartile of urinary nickel and liver fibrosis (OR 1.88; 95% CI, 1.22-2.90). Restricted cubic spline showed that the relationship was linear between urinary nickel and NAFLD and non-monotonic, inverse U-shaped between urinary nickel and liver fibrosis. This cross-sectional study indicated that the risk of NAFLD is associated with urinary nickel, and this correlation was only present among males.

9.
Sci Adv ; 10(13): eadk7955, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536926

RESUMEN

Directly activating CD8+ T cells within the tumor through antigen-presenting cells (APCs) hold promise for tumor elimination. However, M2-like tumor-associated macrophages (TAMs), the most abundant APCs in tumors, hinder CD8+ T cell activation due to inefficient antigen cross-presentation. Here, we demonstrated a personalized nanotherapeutic platform using surgical tumor-derived galactose ligand-modified cancer cell membrane (CM)-coated cysteine protease inhibitor (E64)-loaded mesoporous silica nanoparticles for postsurgical cancer immunotherapy. The platform targeted M2-like TAMs and released E64 within lysosomes, which reshaped antigen cross-presentation and directly activated CD8+ T cells, thus suppressing B16-OVA melanoma growth. Furthermore, this platform, in combination with anti-PD-L1 antibodies, enhanced the therapeutic efficacy and substantially inhibited 4T1 tumor growth. CMs obtained from surgically resected tumors were used to construct a personalized nanotherapeutic platform, which, in synergy with immune checkpoint blockade (ICB), effectively inhibited postsurgical tumor recurrence in 4T1 tumor. Our work offered a robust, safe strategy for cancer immunotherapy and prevention of postsurgical tumor recurrence.


Asunto(s)
Melanoma Experimental , Macrófagos Asociados a Tumores , Animales , Macrófagos Asociados a Tumores/patología , Linfocitos T CD8-positivos , Recurrencia Local de Neoplasia , Células Presentadoras de Antígenos , Antígenos , Melanoma Experimental/patología , Inmunoterapia
10.
EMBO Rep ; 25(3): 1361-1386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332150

RESUMEN

Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Sirtuinas , Humanos , Sirtuinas/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo
11.
Cell Death Dis ; 15(1): 34, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212325

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Ratones , Animales , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Mutación/genética , Transducción de Señal , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Microambiente Tumoral
12.
Acta Biomater ; 176: 356-366, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38160854

RESUMEN

Atherosclerosis is the main cause of a series of fatal cardiovascular diseases, characterized by pathological accumulation of apoptotic cells and lipids. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. The specific nano-bioconjugate utilized acid-responsive calcium phosphate (CaP) as a carrier to load mTOR ASOs, coated with lipid on the surface of CaP nanoparticles (ASOs@CaP), and subsequently modified with aSIRPα. The resulting nano-bioconjugates could accumulate within atherosclerotic plaques, target to macrophages and reactivate lesional phagocytosis through blocking the CD47-SIRPα signaling axis. In addition, efficient delivery of mTOR ASOs inhibited mTOR expression, which significantly restored impaired autophagy. The combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease. STATEMENT OF SIGNIFICANCE: Atherosclerosis is the main cause of a series of fatal cardiovascular diseases. Pro-phagocytic antibody-based or pro-autophagy gene-based therapies are currently being explored to stimulate the phagocytic clearance of apoptotic cells and lipid metabolism; however, monotherapies are only moderately effective or require high doses with unacceptable side effects. Herein, we engineered a specific nano-bioconjugate loaded with antisense oligonucleotides (ASOs) of mammalian target of rapamycin (mTOR) and modified with anti-signal-regulated protein-α antibody (aSIRPα) for macrophage-mediated atherosclerosis therapy. Our study demonstrated that the combined action of mTOR ASOs and aSIRPα reduced apoptotic cells and lipids accumulation. This nanotherapy significantly reduced plaque burden and inhibited progression of atherosclerotic lesions. These results show the potential of specific nano-bioconjugates for the prevention of atherosclerotic cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Sirolimus/farmacología , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Lípidos
14.
Nutrients ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960269

RESUMEN

The etiology of numerous metabolic disorders is characterized by hepatic insulin resistance (IR). Uncertainty surrounds miR-34a's contribution to high-fat-induced hepatic IR and its probable mechanism. The role and mechanism of miR-34a and its target gene ENO3 in high-fat-induced hepatic IR were explored by overexpressing/suppressing miR-34a and ENO3 levels in in vivo and in vitro experiments. Moreover, as a human hepatic IR model, the miR-34a/ENO3 pathway was validated in patients with non-alcoholic fatty liver disease (NAFLD). The overexpression of hepatic miR-34a lowered insulin signaling and altered glucose metabolism in hepatocytes. In contrast, reducing miR-34a expression significantly reversed hepatic IR indices induced by palmitic acid (PA)/HFD. ENO3 was identified as a direct target gene of miR-34a. Overexpression of ENO3 effectively inhibited high-fat-induced hepatic IR-related indices both in vitro and in vivo. Moreover, the expression patterns of members of the miR-34a/ENO3 pathway in the liver tissues of NAFLD patients was in line with the findings of both cellular and animal studies. A high-fat-induced increase in hepatic miR-34a levels attenuates insulin signaling and impairs glucose metabolism by suppressing the expression of its target gene ENO3, ultimately leading to hepatic IR. The miR-34a/ENO3 pathway may be a potential therapeutic target for hepatic IR and related metabolic diseases.


Asunto(s)
Resistencia a la Insulina , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Hígado/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Ratones Endogámicos C57BL
15.
J Control Release ; 362: 524-535, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673307

RESUMEN

Chimeric antigen receptor (CAR)-modified natural killer (NK) cells are recognized as promising immunotherapeutic agents for cancer treatment. However, the efficacy and trafficking of CAR-NK cells in solid tumors are hindered by the complex barriers present in the tumor microenvironment (TME). We have developed a novel strategy that utilizes living CAR-NK cells as carriers to deliver anticancer drugs specifically to the tumor site. We also introduce a time-lapse method for evaluating the efficacy and tumor specificity of CAR-NK cells using a two-photon microscope in live mouse models and three-dimensional (3D) tissue slide cultures. Our results demonstrate that CAR-NK cells exhibit enhanced antitumor immunity when combined with photosensitive chemicals in both in vitro and in vivo tumor models. Additionally, we have successfully visualized the trafficking, infiltration, and accumulation of drug-loaded CAR-NK cells in deeply situated TME using non-invasive intravital two-photon microscopy. Our findings highlight that tumor infiltration of CAR-NK cells can be intravitally monitored through the two-photon microscope approach. In conclusion, our study demonstrates the successful integration of CAR-NK cells as drug carriers and paves the way for combined cellular and small-molecule therapies in cancer treatment. Furthermore, our 3D platform offers a valuable tool for assessing the behavior of CAR cells within solid tumors, facilitating the development and optimization of immunotherapeutic strategies with clinical imaging approaches.

16.
Front Biosci (Landmark Ed) ; 28(8): 181, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37664932

RESUMEN

BACKGROUND: A long-term consumption of saturated fat significantly increases the concentration of saturated fatty acids in serum, which accelerates the appearance of senescence markers in ß-cells and leads to their dysfunction. An understanding of the mechanisms underlying ß-cell senescence induced by stearic acid and the exploration of effective agents preventing it remains largely unclear. Here, we aimed to investigate the protective effect of metformin against stearic acid-treated ß-cell senescence and to assess the involvement of miR-297b-5p in this process. METHODS: To identify senescence, we measured senescence-associated ß-galactosidase activity and the expression of senescence-related genes. Gain and loss of function approaches were applied to explore the role of miR-297b-5p in stearic acid-induced ß-cell senescence. Bioinformatics analysis and a luciferase activity assay were used to predict the downstream targets of miR-297b-5p. RESULTS: Stearic acid markedly induced senescence and suppressed miR-297b-5p expression in mouse ß-TC6 cells, which were significantly alleviated by metformin. After transfection of miR-297b-5p mimics, stearic acid-evoked ß-cell senescence was remarkably prevented. Insulin-like growth factor-1 receptor was identified as a direct target of miR-297b-5p. Inhibition of the insulin-like growth factor-1 receptor prevented stearic acid-induced ß-cell senescence and dysfunction. Moreover, metformin alleviates the impairment of the miR-297b-5p inhibitor in ß-TC6 cells. Additionally, long-term consumption of a high-stearic-acid diet significantly increased senescence and reduced miR-297b-5p expression in mouse islets. CONCLUSIONS: These findings imply that metformin alleviates ß-cell senescence by stearic acid through upregulating miR-297b-5p to suppress insulin-like growth factor-1 receptor expression, thereby providing a potential target to not only prevent high fat-diet-induced ß-cell dysfunction but also for metformin therapy in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Metformina , MicroARNs , Receptor IGF Tipo 1 , Animales , Ratones , Factor I del Crecimiento Similar a la Insulina , Metformina/farmacología , MicroARNs/genética , Ácidos Esteáricos/farmacología , Receptor IGF Tipo 1/genética
17.
Angew Chem Int Ed Engl ; 62(41): e202307025, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37615278

RESUMEN

DNA logic circuits (DLC) enable the accurate identification of specific cell types, such as cancer cells, but they face the challenges of weak output signals and a lack of competent platforms that can efficiently deliver DLC components to the target site in the living body. To address these issues, we rationally introduced a cascaded biological amplifier module based on the Primer Exchange Reaction inspired by electronic circuit amplifier devices. As a paradigm, three abnormally expressed Hela cell microRNAs (-30a, -17, and -21) were chosen as "AND" gate inputs. DLC response to these inputs was boosted by the amplifier markedly enhancing the output signal. More importantly, the encapsulation of DLC and amplifier components into ZIF-8 nanoparticles resulted in their efficient delivery to the target site, successfully distinguishing the Hela tumor subtype from other tumors in vivo. Thus, we envision that this strategy has great potential for clinical cancer diagnosis.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Células HeLa , Biomimética , ADN , Lógica , Neoplasias/diagnóstico
18.
J Am Chem Soc ; 145(32): 17926-17935, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37535859

RESUMEN

RNA-cleaving DNAzymes hold great promise as gene silencers, and spatiotemporal control of their activity through site-specific reactions is crucial but challenging for on-demand therapy. We herein report a novel design of a bioorthogonally inducible DNAzyme that is deactivated by site-specific installation of bioorthogonal caging groups on the designated backbone sites but restores the activity via a phosphine-triggered Staudinger reduction. We perform a systematical screening for installing the caging groups on each backbone site in the catalytic core of 10-23 DNAzyme and identify an inducible DNAzyme with very low leakage activity. This design is demonstrated to achieve bioorthogonally controlled cleavage of exogenous and endogenous mRNA in live cells. It is further extended to photoactivation and endogenous stimuli activation for spatiotemporal or targeted control of gene silencing. The bioorthogonally inducible DNAzyme is applied to a triple-negative breast cancer mouse model using a lipid nanoparticle delivery system, demonstrating high efficiency in knockdown of Lcn2 oncogenes and substantial suppression of tumor growth, thus highlighting the potential of precisely controlling the DNAzyme functions for on-demand gene therapy.


Asunto(s)
ADN Catalítico , Animales , Ratones , ADN Catalítico/genética , ARN/genética , ARN Mensajero
19.
Clin Cancer Res ; 29(19): 3986-4001, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37527025

RESUMEN

PURPOSE: Sarcoma is the second most common solid tumor type in children and adolescents. The high level of tumor heterogeneity as well as aggressive behavior of sarcomas brings serious difficulties to developing effective therapeutic strategies for clinical application. Therefore, it is of great importance to identify accurate biomarkers for early detection and prognostic prediction of sarcomas. EXPERIMENTAL DESIGN: In this study, we characterized three subtypes of sarcomas based on tumor immune infiltration levels (TIIL), and constructed a prognosis-related competing endogenous RNA (ceRNA) network to investigate molecular regulations in the sarcoma tumor microenvironment (TME). We further built a subnetwork consisting of mRNAs and lncRNAs that are targets of key miRNAs and strongly correlated with each other in the ceRNA network. After validation using public data and experiments in vivo and in vitro, we deeply dug the biological role of the miRNAs and lncRNAs in a subnetwork and their impact on TME. RESULTS: Altogether, 5 miRNAs (hsa-mir-125b-2, hsa-mir-135a-1, hsa-mir92a-2, hsa-mir-181a-2, and hsa-mir-214), 3 lncRNAs (LINC00641, LINC01146, and LINC00892), and 10 mRNAs (AGO2, CXCL10, CD86, CASP1, IKZF1, CD27, CD247, CD69, CCR2, and CSF2RB) in the subnetwork were identified as vital regulators to shape the TME. On the basis of the systematic network, we identified that trichostatin A, a pan-HDAC inhibitor, could potentially regulate the TME of sarcoma, thereby inhibiting the tumor growth. CONCLUSIONS: Our study identifies a ceRNA network as a promising biomarker for sarcoma. This system provides a more comprehensive understanding and a novel perspective of how ceRNAs are involved in shaping sarcoma TME.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Sarcoma , Niño , Humanos , Adolescente , Pronóstico , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/genética , Sarcoma/genética
20.
Cell Regen ; 12(1): 23, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314549

RESUMEN

Organoids have attracted great interest for disease modelling, drug discovery and development, and tissue growth and homeostasis investigations. However, lack of standards for quality control has become a prominent obstacle to limit their translation into clinic and other applications. "Human intestinal organoids" is the first guideline on human intestinal organoids in China, jointly drafted and agreed by the experts from the Chinese Society for Cell Biology and its branch society: the Chinese Society for Stem Cell Research. This standard specifies terms and definitions, technical requirements, test methods, inspection rules for human intestinal organoids, which is applicable to quality control during the process of manufacturing and testing of human intestinal organoids. It was originally released by the Chinese Society for Cell Biology on 24 September 2022. We hope that the publication of this standard will guide institutional establishment, acceptance and execution of proper practical protocols and accelerate the international standardization of human intestinal organoids for applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA