Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(47): e202212676, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36193684

RESUMEN

Electrochemical nitrogen reduction reaction (NRR) under ambient conditions has attracted considerable scientific and engineering interest as a green alternative route for NH3 production. Molybdenum is a promising candidate as an electrocatalyst for NRR as it has a suitable binding strength with N species. However, the design of an efficient Mo-based catalyst remains elusive. To enhance the selectivity of NRR toward NH3 , we have developed a carbon nanofiber catalyst embedded with molybdenum and cobalt (Co-Mo-CNF). Co with a strong ability to dissociate water enhances local proton source near Mo, where the hydrogenation step of the NRR occurs. A NH3 formation rate of 72.72 µg h-1 mg-1 and a Faradaic efficiency of 34.5 % were obtained at -0.5 V vs. RHE. We also attempted to provide a mechanistic understanding of the NRR via in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and isotopic labeling experiments using 15 N2 and D2 O.

2.
Nanoscale ; 14(4): 1395-1408, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35018401

RESUMEN

The electrochemical synthesis of ammonia at ambient temperature and pressure has the potential to replace the conventional process for the production of ammonia. However, the low ammonia yield and poor long-term stability of catalysts for the synthesis of ammonia hinders the application of this technology. Herein, we endeavored to tackle this challenge by synthesizing 3-D vertical graphene (VG) on Ni foam via a one-step, low-temperature plasma process, which offered high conductivity and large surface area. Subsequently, the vertical graphene on Ni foam was loaded with nanolayers of ruthenium oxide (RuO2, ∼2 nm) and cerium oxide (CeO2, <20 nm) nanoparticles via magnetron sputtering. The incorporation of nanoparticle layers (RuO2 and CeO2/RuO2) on VG significantly increased the NH3 yield in KOH electrolyte. Finally, the performance and long-term stability of this composite material were successfully demonstrated by the addition of CeO2/RuO2 nanolayers on the VG electrocatalyst. The catalyst achieved an excellent performance with a high ammonia synthesis yield of 50.56 µg mgtotal cat.-1 h-1 (1.11 × 10-10 mol cm-2 s-1) during the performance evaluation period of 36 h. This observation was also verified by density functional theory calculation, where CeO2 exhibited the best catalytic performance compared to RuO2 and pristine graphene.

3.
Sci Rep ; 5: 17955, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26658923

RESUMEN

There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm(2) V(-1) s(-1), respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA