RESUMEN
Purpose: The abundance and distribution of tumor-infiltrating lymphocytes (TILs) as well as that of other components of the tumor microenvironment is of particular importance for predicting response to immunotherapy in lung cancer (LC). We describe here a pilot study employing artificial intelligence (AI) in the assessment of TILs and other cell populations, intending to reduce the inter- or intra-observer variability that commonly characterizes this evaluation. Design: We developed a machine learning-based classifier to detect tumor, immune, and stromal cells on hematoxylin and eosin-stained sections, using the open-source framework QuPath. We evaluated the quantity of the aforementioned three cell populations among 37 LC whole slide images regions of interest, comparing the assessments made by five pathologists, both before and after using graphical predictions made by AI, for a total of 1110 quantitative measurements. Results: Our findings indicate noteworthy variations in score distribution among pathologists and between individual pathologists and AI. The AI-guided pathologist's evaluations resulted in reduction of significant discrepancies across pathologists: three comparisons showed a loss of significance (pâ¯>â¯0.05), whereas other four showed a reduction in significance (pâ¯>â¯0.01). Conclusions: We show that employing a machine learning approach in cell population quantification reduces inter- and intra-observer variability, improving reproducibility and facilitating its use in further validation studies.
RESUMEN
Clinical Bioinformatics is a knowledge framework required to interpret data of medical interest via computational methods. This area became of dramatic importance in precision oncology, fueled by cancer genomic profiling: most definitions of Molecular Tumor Boards require the presence of bioinformaticians. However, all available literature remained rather vague on what are the specific needs in terms of digital tools and expertise to tackle and interpret genomics data to assign novel targeted or biomarker-driven targeted therapies to cancer patients. To fill this gap, in this article, we present a catalog of software families and human skills required for the tumor board bioinformatician, with specific examples of real-world applications associated with each element presented.
Asunto(s)
Biología Computacional , Neoplasias , Programas Informáticos , Humanos , Biología Computacional/métodos , Neoplasias/genética , Medicina de Precisión , Genómica/métodos , Biomarcadores de Tumor/genéticaRESUMEN
Acute myeloid leukemia (AML) with inv(16) is typically associated with a favourable prognosis. However, up to 40â¯% of patients will eventually experience disease relapse. Herein, we dissected the genomic and transcriptomic profile of inv(16) AML to identify potential prognostic markers and therapeutic vulnerabilities. Sequencing data from 222 diagnostic samples, including 44 relapse/refractory patients, revealed a median of 1 concomitant additional mutation, cooperating with inv(16) in leukemogenesis. Notably, the mutational landscape at diagnosis did not differ significantly between patients experiencing primary induction failure or relapse when compared to the rest of the cohort, except for an increase in the mutational burden in the relapse/refractory group. RNA-Seq of unpaired diagnostic(n=7) and relapse(n=6) samples allowed the identification of oxidative phosphorylation (OXPHOS) as one of the most significantly downregulated pathways at relapse. Considering that OXPHOS could be targeted by Venetoclax/Azacitidine combination, we explored its biological effects on an inv(16) cell-line ME-1, but there was no additional advantage in terms of cell death over Azacitidine alone. To enhance Venetoclax efficacy, we tested in vitro effects of Metformin as a potential drug able to enhance chemosensitivity of AML cells by inhibiting the mitochondrial transfer. By challenging ME-1 with this combination, we observed a significant synergistic interaction at least similar to that of Venetoclax/Azacitidine. In conclusions, we identified a downregulated expression of oxidative phosphorylation (OXPHOS) at relapse in AML with inv(16), and explored the in vitro effects of metformin as a potential drug to enhance chemosensitivity in this setting.
Asunto(s)
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/tratamiento farmacológico , Persona de Mediana Edad , Femenino , Masculino , Adulto , Fosforilación Oxidativa/efectos de los fármacos , Inversión Cromosómica , Anciano , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Mutación , Sulfonamidas/farmacología , Pronóstico , Cromosomas Humanos Par 16/genética , Recurrencia , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Anciano de 80 o más AñosRESUMEN
Transgender individuals exhibit a higher prevalence of cancer-related risk factors, such as substance abuse and sexually transmitted infections. These factors, coupled with suboptimal adherence to cancer screening recommendations, may lead to a higher incidence of cancers, such as breast and cervical cancer, and contribute to delayed diagnoses in transgender patients. Herein, we report a unique case of a transgender man with a history of alcohol and drug abuse, undergoing gender-affirming exogenous testosterone therapy, who developed synchronous locally advanced breast cancer and human papilloma virus (HPV)-related cervical cancer. He underwent concurrent chemoradiation for cervical cancer and surgery followed by endocrine therapy for breast cancer. The treatments were suboptimals due to patient's comorbidities, among them liver cirrhosis leading to an early death. Additionally, we have conducted a review of existing literature, including case reports, clinical studies, and review articles investigating the role of potential risk factors specifically related to breast and cervical tumors in transgender men. Gender-affirming testosterone therapy is common among transgender men to induce gender affirmation, but its link to breast cancer risk remains ambiguous, with studies being limited and sometimes contradictory. Conversely, HPV is a well-established cause of up to 99% of cervical cancers. Despite persistent risk for cervical cancer in transgender men who retain their cervix, several studies indicate notable disparities in screening adherence, due to personal and structural barriers. Moreover, alcohol and drug use disorders, commonly encountered in transgender population, may negatively influence the adherence to screening programs. Current cancer screening guidelines for this population are somewhat unclear, and specific programs based on more robust data are urgently required along with further tailored studies.
Breast and cervical cancer in transgender men: literature review and a case report Transgender individuals are persons whose gender identity does not conform to that typically associated with the sex to which they were assigned at birth. Transgender people may have more cancer-related risk factors, such as substance abuse and sexually transmitted infections. These factors, along with suboptimal adherence to cancer screening, may lead to a higher incidence of cancers, among them breast and cervical cancer, and may also contribute to delayed diagnoses. Herein we report the case of a transgender man, recorded as female at birth but identifying as male, with a history of alcohol and drug abuse. He underwent testosterone therapy in order to affirm his gender. Moreover, he refused cancer screening, due to personal and social barriers. During the transition, he developed simultaneously a locally advanced breast cancer and a cervical cancer, the latter related to an infection from Human Papillomavirus. The patient was treated with chemoradiation for cervical cancer, and with surgery followed by endocrine therapy for breast cancer. The treatments were suboptimals due to patient's comorbidities, partly related to his previous lifestyle. Additionally, we have conducted a review of existing literature on the topic. Trangender men usually undergo testosterone to induce gender-affirmation. The role of testosterone therapy in breast cancer development remains unclear, with studies being contradictory. Conversely, Human Papillomavirus is a well-established cause of cervical cancers. Transgender men who retain their cervix are at risk for cervical cancer. Despite the persistent risk, notable disparities in screening adherence, due to personal and structural barriers, are reported. Moreover, alcohol and drug use disorders, commonly encountered in transgender population, may contrtibute to the low adherence to screening programs. Furthermore, screening guidelines are somewhat unclear, and specific programs are urgently required.
RESUMEN
We assessed the impact of DNA damage response and repair (DDR) biomarker expressions in 222 node-positive early breast cancer (BC) patients from a previous Phase III GOIM 9902 trial of adjuvant taxanes. At a median follow-up of 64 months, the original study showed no disease-free survival (DFS) or overall survival (OS) differences with the addition of docetaxel (D) to epirubicine-cyclophosphamide (EC). Immunohistochemistry was employed to assess the expression of DDR phosphoproteins (pATM, pATR, pCHK1, γH2AX, pRPA32, and pWEE1) in tumor tissue, and their association with clinical outcomes was evaluated through the Cox elastic net model. Over an extended follow-up of 234 months, we confirmed no significant differences in DFS or OS between patients treated with EC and those receiving D â EC. A DDR risk score, inversely driven by ATM and ATR expression, emerged as an independent prognostic factor for both DFS (HR = 0.41, p < 0.0001) and OS (HR = 0.61, p = 0.046). Further validation in a public adjuvant BC cohort was possible only for ATM, confirming its protective role. Overall, our findings confirm the potential role of the DDR pathway in BC prognostication and in shaping treatment strategies advocating for an integrated approach, combining molecular markers with clinical-pathological factors.
RESUMEN
PURPOSE: Co-occurring mutations in KEAP1 and STK11/KRAS have emerged as determinants of survival outcomes in patients with non-small cell lung cancer (NSCLC) treated with immunotherapy. However, these mutational contexts identify a fraction of nonresponders to immune checkpoint inhibitors. We hypothesized that KEAP1 wild-type tumors recapitulate the transcriptional footprint of KEAP1 mutations and that this KEAPness phenotype can determine immune responsiveness with higher precision compared to mutation-based models. EXPERIMENTAL DESIGN: The Cancer Genome Atlas was used to infer the KEAPness phenotype and explore its immunological correlates at the pan-cancer level. The association between KEAPness and survival outcomes was tested in two independent cohorts of patients with advanced NSCLC treated with immunotherapy and profiled by RNA sequencing (SU2C n = 153; OAK/POPLAR n = 439). The NSCLC TRACERx421 multiregion sequencing study (tumor regions, n = 947) was used to investigate evolutionary trajectories. RESULTS: KEAPness-dominant tumors represented 50% of all NSCLCs and were associated with shorter progression-free survival (PFS) and overall survival (OS) compared to KEAPness-free cases in independent cohorts of patients with NSCLC treated with immunotherapy (SU2C PFS P = 0.042, OS P = 0.008; OAK/POPLAR PFS P = 0.0014, OS P < 0.001). Patients with KEAPness tumors had survival outcomes comparable to those with KEAP1-mutant tumors. In the TRACERx421, KEAPness exhibited limited transcriptional intratumoral heterogeneity and immune exclusion, resembling the KEAP1-mutant disease. This phenotypic state occurred across genetically divergent tumors, exhibiting shared and private cancer genes under positive selection when compared to KEAP1-mutant tumors. CONCLUSIONS: We identified a KEAPness phenotype across evolutionary divergent tumors. KEAPness outperforms mutation-based classifiers as a biomarker of inferior survival outcomes in patients with NSCLC treated with immunotherapy.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares , Mutación , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Inmunoterapia/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Biomarcadores de Tumor/genética , Pronóstico , Masculino , Fenotipo , Femenino , Regulación Neoplásica de la Expresión GénicaRESUMEN
BACKGROUND: Patient and public involvement (PPI) has become an essential part of health research. There is a need for genuine involvement in order to ensure that research is relevant to patients. This can then improve the quality, relevance, and impact of health research, while at the same time reducing wasted research and in doing so bringing science and society closer together. Despite the increasing attention for this involvement, it is not yet common practice to report on proposed activities. An article reporting planned PPI could provide guidance and inspiration for the wider academic community in future activities. Therefore, this current article aims to describe the way in which PPI principles are incorporated in the research project called "Quality of Life in Oncology: measuring what matters for cancer patients and survivors in Europe (EUonQoL)." This project aims to develop a new set of questionnaires to enable cancer patients to assess their quality of life, entitled the EUonQoL-Kit. METHODS: The first step is to recruit cancer patients and their informal caregivers as co-researchers in order to train them to collaborate with the researchers. Based on their skills and preferences, they are then assigned to several of the project's work packages. Their individual roles, tasks, and responsibilities regarding the work packages, to which they have been assigned, are evaluated and adapted when necessary. The impact of their involvement is evaluated by both the researchers and co-researchers. DISCUSSION: PPI is a complex and dynamic process. As such, the overall structure of the research may be defined while at the same time leaving room for certain aspects to be filled in later. Our research is, we believe, relevant as co-researcher involvement in such a large European project as EUonQoL is a new development.
RESUMEN
BACKGROUND: Management of PICC dressing can be performed at home by the patient through adequate training and telenursing. This trial verifies that the incidence of catheter-related complications in home patients, assisted by telenursing, is not greater than that observed in outpatients. METHODS: This clinical trial is composed of 72 patients with malignant tumors who underwent long-term chemotherapy with PICC insertion. They were randomly divided into an experimental group (33 cases) and a calibration group (39 cases). The control group received outpatient dressing for the PICC at the hospital, while the experimental group received a telenursing intervention about the management of the PICC. The incidence of catheter-related infections, the ability of self-management, and a rough cost/benefit estimation were compared between the two groups. This trial was performed according to the CONSORT 2010 checklist. RESULTS: The two groups do not significantly differ in relation to age, sex, and PICCs in terms of the body side insertion, the type of dressing, and the agents used for cleaning. The analysis of the results showed that in the home-managed group, the clinical events reported during the connection were higher when compared with the outpatient group (p < 0.001). The patients in the homecare group developed frequent complications resulting from skin redness (p < 0.001). CONCLUSION: The use of telenursing for patient education in cancer centers can reduce nurses' working time, improving the self-management capacity of patients with a long-term PICC. This trial was retrospectively registered with the Clinical Trial Gov on the 18 May 2023 with registration number NCT05880420.
RESUMEN
HER2 activating mutations have emerged as oncogenic drivers and therapeutic targets in a variety of human tumors. In breast cancer, these deregulations occur at low frequency, and are mostly detected in HER2-nonamplified, metastatic disease. Preclinical evidence has clarified the role of hotspot mutations in HER2 constitutive activation, defining them as an alternative mechanism to HER2 gene amplification. Furthermore, recent clinical studies have indicated the emergence of newly acquired HER2 deregulations in significant proportions of breast cancer patients who experience disease progression following both endocrine and HER2-targeted therapies. As the involvement of HER2 mutation in therapy resistance may profoundly impact patient outcomes on successive therapies, several clinical trials are currently investigating the efficacy of various HER2-targeted drugs in HER2-mutant breast cancer. In this review, we firstly summarize the structural organization of the HER2 oncogene and its historical impact on breast cancer prognosis and therapeutic advancement. Then, we provide an overview of the frequencies and functional relevance of clinically recurrent HER2 mutations in breast cancer with a special focus on their role in therapeutic resistance. Finally, we provide a collection of the clinical trials that are currently exploring novel therapeutic approaches for this patient subset and discuss the related perspectives and challenges.
Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Mutación , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Receptor ErbB-2/genética , Femenino , Resistencia a Antineoplásicos/genética , Terapia Molecular Dirigida/métodos , Pronóstico , Ensayos Clínicos como Asunto , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacologíaRESUMEN
Scientific literature supports the evidence that cancer stem cells (CSCs) retain inside low reactive oxygen species (ROS) levels and are, therefore, less susceptible to cell death, including ferroptosis, a type of cell death dependent on iron-driven lipid peroxidation. A collection of lung adenocarcinoma (LUAD) primary cell lines derived from malignant pleural effusions (MPEs) of patients was used to obtain 3D spheroids enriched for stem-like properties. We observed that the ferroptosis inducer RSL3 triggered lipid peroxidation and cell death in LUAD cells when grown in 2D conditions; however, when grown in 3D conditions, all cell lines underwent a phenotypic switch, exhibiting substantial resistance to RSL3 and, therefore, protection against ferroptotic cell death. Interestingly, this phenomenon was reversed by disrupting 3D cells and growing them back in adherence, supporting the idea of CSCs plasticity, which holds that cancer cells have the dynamic ability to transition between a CSC state and a non-CSC state. Molecular analyses showed that ferroptosis resistance in 3D spheroids correlated with an increased expression of antioxidant genes and high levels of proteins involved in iron storage and export, indicating protection against oxidative stress and low availability of iron for the initiation of ferroptosis. Moreover, transcriptomic analyses highlighted a novel subset of genes commonly modulated in 3D spheroids and potentially capable of driving ferroptosis protection in LUAD-CSCs, thus allowing to better understand the mechanisms of CSC-mediated drug resistance in tumors.
Asunto(s)
Adenocarcinoma del Pulmón , Ferroptosis , Neoplasias Pulmonares , Células Madre Neoplásicas , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Esferoides Celulares/efectos de los fármacos , Línea Celular Tumoral , Peroxidación de Lípido , Especies Reactivas de Oxígeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Hierro/metabolismoRESUMEN
Therapy of melanoma has improved dramatically over the last years thanks to the development of targeted therapies (MAPKi) and immunotherapies. However, drug resistance continues to limit the efficacy of these therapies. Our research group has provided robust evidence as to the involvement of a set of microRNAs in the development of resistance to target therapy in BRAF-mutated melanomas. Among them, a pivotal role is played by the oncosuppressor miR-579-3p. Here we show that miR-579-3p and the microphthalmia-associated transcription factor (MITF) influence reciprocally their expression through positive feedback regulatory loops. In particular we show that miR-579-3p is specifically deregulated in BRAF-mutant melanomas and that its expression levels mirror those of MITF. Luciferase and ChIP studies show that MITF is a positive regulator of miR-579-3p, which is located in the intron 11 of the human gene ZFR (Zink-finger recombinase) and is co-transcribed with its host gene. Moreover, miR-579-3p, by targeting BRAF, is able to stabilize MITF protein thus inducing its own transcription. From biological points of view, early exposure to MAPKi or, alternatively miR-579-3p transfection, induce block of proliferation and trigger senescence programs in BRAF-mutant melanoma cells. Finally, the long-term development of resistance to MAPKi is able to select cells characterized by the loss of both miR-579-3p and MITF and the same down-regulation is also present in patients relapsing after treatments. Altogether these findings suggest that miR-579-3p/MITF interplay potentially governs the balance between proliferation, senescence and resistance to therapies in BRAF-mutant melanomas.
Asunto(s)
Melanoma , MicroARNs , Humanos , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Recurrencia Local de Neoplasia/genética , MicroARNs/genética , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión GénicaRESUMEN
BACKGROUND: First identified in Drosophila melanogaster, the Hippo pathway is considered a major regulatory cascade controlling tissue homeostasis and organ development. Hippo signaling components include kinases whose activity regulates YAP and TAZ final effectors. In response to upstream stimuli, YAP and TAZ control transcriptional programs involved in cell proliferation, cytoskeletal reorganization and stemness. MAIN TEXT: While fine tuning of Hippo cascade components is essential for maintaining the balance between proliferative and non-proliferative signals, pathway signaling is frequently dysregulated in gastrointestinal cancers. Also, YAP/TAZ aberrant activation has been described in conditions characterized by chronic inflammation that precede cancer development, suggesting a role of Hippo effectors in triggering carcinogenesis. In this review, we summarize the architecture of the Hippo pathway and discuss the involvement of signaling cascade unbalances in premalignant lesions of the gastrointestinal tract, providing a focus on the underlying molecular mechanisms. CONCLUSIONS: The biology of premalignant Hippo signaling dysregulation needs further investigation in order to elucidate the evolutionary trajectories triggering cancer inititation and develop effective early therapeutic strategies targeting the Hippo/YAP pathway.
Asunto(s)
Vía de Señalización Hippo , Neoplasias , Animales , Drosophila melanogaster , Neoplasias/tratamiento farmacológico , Transducción de Señal , Tracto GastrointestinalRESUMEN
BACKGROUND: The current therapeutic algorithm for Advanced Stage Melanoma comprises of alternating lines of Targeted and Immuno-therapy, mostly via Immune-Checkpoint blockade. While Comprehensive Genomic Profiling of solid tumours has been approved as a companion diagnostic, still no approved predictive biomarkers are available for Melanoma aside from BRAF mutations and the controversial Tumor Mutational Burden. This study presents the results of a Multi-Centre Observational Clinical Trial of Comprehensive Genomic Profiling on Target and Immuno-therapy treated advanced Melanoma. METHODS: 82 samples, collected from 7 Italian Cancer Centres of FFPE-archived Metastatic Melanoma and matched blood were sequenced via a custom-made 184-gene amplicon-based NGS panel. Sequencing and bioinformatics analysis was performed at a central hub. Primary analysis was carried out via the Ion Reporter framework. Secondary analysis and Machine Learning modelling comprising of uni and multivariate, COX/Lasso combination, and Random Forest, was implemented via custom R/Python scripting. RESULTS: The genomics landscape of the ACC-mela cohort is comparable at the somatic level for Single Nucleotide Variants and INDELs aside a few gene targets. All the clinically relevant targets such as BRAF and NRAS have a comparable distribution thus suggesting the value of larger scale sequencing in melanoma. No comparability is reached at the CNV level due to biotechnological biases and cohort numerosity. Tumour Mutational Burden is slightly higher in median for Complete Responders but fails to achieve statistical significance in Kaplan-Meier survival analysis via several thresholding strategies. Mutations on PDGFRB, NOTCH3 and RET were shown to have a positive effect on Immune-checkpoint treatment Overall and Disease-Free Survival, while variants in NOTCH4 were found to be detrimental for both endpoints. CONCLUSIONS: The results presented in this study show the value and the challenge of a genomics-driven network trial. The data can be also a valuable resource as a validation cohort for Immunotherapy and Target therapy genomic biomarker research.
Asunto(s)
Detección Precoz del Cáncer , Melanoma , Humanos , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf , Genómica , ItaliaRESUMEN
The COVID-19 pandemic, once a global crisis, is now largely under control, a testament to the extraordinary global efforts involving vaccination and public health measures. However, the relentless evolution of SARS-CoV-2, leading to the emergence of new variants, continues to underscore the importance of remaining vigilant and adaptable. Monoclonal antibodies (mAbs) have stood out as a powerful and immediate therapeutic response to COVID-19. Despite the success of mAbs, the evolution of SARS-CoV-2 continues to pose challenges and the available antibodies are no longer effective. New variants require the ongoing development of effective antibodies. In the present study, we describe the generation and characterization of neutralizing mAbs against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein by combining plasmid DNA and recombinant protein vaccination. By integrating genetic immunization for rapid antibody production and the potent immune stimulation enabled by protein vaccination, we produced a rich pool of antibodies, each with unique binding and neutralizing specificities, tested with the ELISA, BLI and FACS assays and the pseudovirus assay, respectively. Here, we present a panel of mAbs effective against the SARS-CoV-2 variants up to Omicron BA.1 and BA.5, with the flexibility to target emerging variants. This approach ensures the preparedness principle is in place to address SARS-CoV-2 actual and future infections.
RESUMEN
Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.
Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Clorpromazina/farmacología , Clorpromazina/uso terapéutico , Piruvato Quinasa/metabolismo , Línea Celular Tumoral , Metabolismo EnergéticoRESUMEN
BACKGROUND: BRAF-mutant melanoma patients benefit from the combinatorial treatments with BRAF and MEK inhibitors. However, acquired drug resistance strongly limits the efficacy of these targeted therapies in time. Recently, many findings have underscored the involvement of microRNAs as main drivers of drug resistance. In this context, we previously identified a subset of oncomiRs strongly up-regulated in drug-resistant melanomas. In this work, we shed light on the molecular role of two as yet poorly characterized oncomiRs, miR-4443 and miR-4488. METHODS: Invasion and migration have been determined by wound healing, transwell migration/invasion assays and Real Time Cell Analysis (RTCA) technology. miR-4488 and miR-4443 have been measured by qRT-PCR. Nestin levels have been tested by western blot, confocal immunofluorescence, immunohistochemical and flow cytometry analyses. RESULTS: We demonstrate that the two oncomiRs are responsible for the enhanced migratory and invasive phenotypes, that are a hallmark of drug resistant melanoma cells. Moreover, miR-4443 and miR-4488 promote an aberrant cytoskeletal reorganization witnessed by the increased number of stress fibers and cellular protrusions-like cancer cell invadopodia. Mechanistically, we identified the intermediate filament nestin as a molecular target of both oncomiRs. Finally, we have shown that nestin levels are able to predict response to treatments in melanoma patients. CONCLUSIONS: Altogether these findings have profound translational implications in the attempt i) to develop miRNA-targeting therapies to mitigate the metastatic phenotypes of BRAF-mutant melanomas and ii) to identify novel biomarkers able to guide clinical decisions.