Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(34): e2315009121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133860

RESUMEN

The enzyme UDP-glucose: glycoprotein glucosyltransferase (UGGT) is the gatekeeper of protein folding within the endoplasmic reticulum (ER). One-third of the human proteome traverses the ER where folding and maturation are facilitated by a complex protein homeostasis network. Both glycan modifications and disulfide bonds are of key importance in the maturation of these ER proteins. The actions of UGGT are intimately linked to the glycan code for folding and maturation of secretory proteins in the ER. UGGT selectively glucosylates the N-linked glycan of misfolded proteins so that they can reenter the lectin-folding chaperone cycle and be retained within the ER for further attempts at folding. An intriguing aspect of UGGT function is its interaction with its poorly understood cochaperone, the 15 kDa selenoprotein known as SELENOF or SEP15. This small protein contains a rare selenocysteine residue proposed to act as an oxidoreductase toward UGGT substrates. AlphaFold2 predictions of the UGGT1/SEP15 complex provide insight into this complex at a structural level. The predicted UGGT1/SEP15 interaction interface was validated by mutagenesis and coimmunoprecipitation experiments. These results serve as a springboard for models of the integrated action of UGGT1 and SEP15.


Asunto(s)
Retículo Endoplásmico , Glucosiltransferasas , Pliegue de Proteína , Selenoproteínas , Selenoproteínas/metabolismo , Selenoproteínas/genética , Retículo Endoplásmico/metabolismo , Humanos , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Unión Proteica
2.
J Biol Chem ; 300(1): 105574, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110031

RESUMEN

The 70 kDa heat shock proteins (Hsp70s) play a pivotal role in many cellular functions using allosteric communication between their nucleotide-binding domain (NBD) and substrate-binding domain, mediated by an interdomain linker, to modulate their affinity for protein clients. Critical to modulation of the Hsp70 allosteric cycle, nucleotide-exchange factors (NEFs) act by a conserved mechanism involving binding to the ADP-bound NBD and opening of the nucleotide-binding cleft to accelerate the release of ADP and binding of ATP. The crystal structure of the complex between the NBD of the Escherichia coli Hsp70, DnaK, and its NEF, GrpE, was reported previously, but the GrpE in the complex carried a point mutation (G122D). Both the functional impact of this mutation and its location on the NEF led us to revisit the DnaK NBD/GrpE complex structurally using AlphaFold modeling and validation by solution methods that report on protein conformation and mutagenesis. This work resulted in a new model for the DnaK NBD in complex with GrpE in which subdomain IIB of the NBD rotates more than in the crystal structure, resulting in an open conformation of the nucleotide-binding cleft, which now resembles more closely what is seen in other Hsp/NEF complexes. Moreover, the new model is consistent with the increased ADP off-rate accompanying GrpE binding. Excitingly, our findings point to an interdomain allosteric signal in DnaK triggered by GrpE binding.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mutagénesis , Mutación Puntual , Unión Proteica , Dominios Proteicos , Reproducibilidad de los Resultados , Rotación
3.
J Phys Chem B ; 126(36): 6780-6791, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36040440

RESUMEN

Hsp70 molecular chaperones play central roles in maintaining a healthy cellular proteome. Hsp70s function by binding to short peptide sequences in incompletely folded client proteins, thus preventing them from misfolding and/or aggregating, and in many cases holding them in a state that is competent for subsequent processes like translocation across membranes. There is considerable interest in predicting the sites where Hsp70s may bind their clients, as the ability to do so sheds light on the cellular functions of the chaperone. In addition, the capacity of the Hsp70 chaperone family to bind to a broad array of clients and to identify accessible sequences that enable discrimination of those that are folded from those that are not fully folded, which is essential to their cellular roles, is a fascinating puzzle in molecular recognition. In this article we discuss efforts to harness computational modeling with input from experimental data to develop a predictive understanding of the promiscuous yet selective binding of Hsp70 molecular chaperones to accessible sequences within their client proteins. We trace how an increasing understanding of the complexities of Hsp70-client interactions has led computational modeling to new underlying assumptions and design features. We describe the trend from purely data-driven analysis toward increased reliance on physics-based modeling that deeply integrates structural information and sequence-based functional data with physics-based binding energies. Notably, new experimental insights are adding to our understanding of the molecular origins of "selective promiscuity" in substrate binding by Hsp70 chaperones and challenging the underlying assumptions and design used in earlier predictive models. Taking the new experimental findings together with exciting progress in computational modeling of protein structures leads us to foresee a bright future for a predictive understanding of selective-yet-promiscuous binding exploited by Hsp70 molecular chaperones; the resulting new insights will also apply to substrate binding by other chaperones and by signaling proteins.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Proteínas HSP70 de Choque Térmico/química , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica , Pliegue de Proteína , Proteoma/metabolismo
5.
PLoS Comput Biol ; 17(11): e1009567, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34735438

RESUMEN

To help cells cope with protein misfolding and aggregation, Hsp70 molecular chaperones selectively bind a variety of sequences ("selective promiscuity"). Statistical analyses from substrate-derived peptide arrays reveal that DnaK, the E. coli Hsp70, binds to sequences containing three to five branched hydrophobic residues, although otherwise the specific amino acids can vary considerably. Several high-resolution structures of the substrate -binding domain (SBD) of DnaK bound to peptides reveal a highly conserved configuration of the bound substrate and further suggest that the substrate-binding cleft consists of five largely independent sites for interaction with five consecutive substrate residues. Importantly, both substrate backbone orientations (N- to C- and C- to N-) allow essentially the same backbone hydrogen-bonding and side-chain interactions with the chaperone. In order to rationalize these observations, we performed atomistic molecular dynamics simulations to sample the interactions of all 20 amino acid side chains in each of the five sites of the chaperone in the context of the conserved substrate backbone configurations. The resulting interaction energetics provide the basis set for deriving a predictive model that we call Paladin (Physics-based model of DnaK-Substrate Binding). Trained using available peptide array data, Paladin can distinguish binders and nonbinders of DnaK with accuracy comparable to existing predictors and further predicts the detailed configuration of the bound sequence. Tested using existing DnaK-peptide structures, Paladin correctly predicted the binding register in 10 out of 13 substrate sequences that bind in the N- to C- orientation, and the binding orientation in 16 out of 22 sequences. The physical basis of the Paladin model provides insight into the origins of how Hsp70s bind substrates with a balance of selectivity and promiscuity. The approach described here can be extended to other Hsp70s where extensive peptide array data is not available.


Asunto(s)
Biología Computacional/métodos , Proteínas HSP70 de Choque Térmico/metabolismo , Sitios de Unión , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Fenómenos Físicos , Unión Proteica , Conformación Proteica , Dominios Proteicos
6.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34625496

RESUMEN

Heat shock protein 70 (Hsp70) chaperones bind many different sequences and discriminate between incompletely folded and folded clients. Most research into the origins of this "selective promiscuity" has relied on short peptides as substrates to dissect the binding, but much less is known about how Hsp70s bind full-length client proteins. Here, we connect detailed structural analyses of complexes between the Escherichia coli Hsp70 (DnaK) substrate-binding domain (SBD) and peptides encompassing five potential binding sites in the precursor to E. coli alkaline phosphatase (proPhoA) with SBD binding to full-length unfolded proPhoA. Analysis of SBD complexes with proPhoA peptides by a combination of X-ray crystallography, methyl-transverse relaxation optimized spectroscopy (methyl-TROSY), and paramagnetic relaxation enhancement (PRE) NMR and chemical cross-linking experiments provided detailed descriptions of their binding modes. Importantly, many sequences populate multiple SBD binding modes, including both the canonical N to C orientation and a C to N orientation. The favored peptide binding mode optimizes substrate residue side-chain compatibility with the SBD binding pockets independent of backbone orientation. Relating these results to the binding of the SBD to full-length proPhoA, we observe that multiple chaperones may bind to the protein substrate, and the binding sites, well separated in the proPhoA sequence, behave independently. The hierarchy of chaperone binding to sites on the protein was generally consistent with the apparent binding affinities observed for the peptides corresponding to these sites. Functionally, these results reveal that Hsp70s "read" sequences without regard to the backbone direction and that both binding orientations must be considered in current predictive algorithms.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Dominios Proteicos/fisiología , Sitios de Unión/fisiología , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica/fisiología , Pliegue de Proteína
7.
Biochem J ; 476(11): 1653-1677, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201219

RESUMEN

The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Sitio Alostérico , Sitios de Unión , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Agregado de Proteínas , Pliegue de Proteína , Transporte de Proteínas , Proteolisis
8.
Proc Natl Acad Sci U S A ; 115(47): 11970-11975, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397123

RESUMEN

The 70-kDa heat shock proteins (Hsp70s) are molecular chaperones that perform a wide range of critical cellular functions. They assist in the folding of newly synthesized proteins, facilitate assembly of specific protein complexes, shepherd proteins across membranes, and prevent protein misfolding and aggregation. Hsp70s perform these functions by a conserved mechanism that relies on allosteric cycles of nucleotide-modulated binding and release of client proteins. Current models for Hsp70 allostery have come from extensive study of the bacterial Hsp70, DnaK. Extending our understanding to eukaryotic Hsp70s is extremely important not only in providing a likely common mechanistic framework but also because of their central roles in cellular physiology. In this study, we examined the allosteric behaviors of the eukaryotic cytoplasmic Hsp70s, HspA1 and Hsc70, and found significant differences from that of DnaK. We found that HspA1 and Hsc70 favor a state in which the nucleotide-binding domain (NBD) and substrate-binding domain (SBD) are intimately docked significantly more as compared to DnaK. Past work established that the NBD-SBD interface and the helical lid-ß-SBD interface govern the allosteric landscape of DnaK. Here, we identified sites on these interfaces that differ between eukaryotic cytoplasmic Hsp70s and DnaK. Our mutational analysis has revealed key evolutionary variations that account for the population shifts between the docked and undocked conformations. These results underline the tunability of Hsp70 functions by modulation of allosteric interfaces through evolutionary diversification and also suggest sites where the binding of small-molecule modulators could influence Hsp70 function.


Asunto(s)
Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Regulación Alostérica/genética , Sitio Alostérico/genética , Animales , Biología Computacional/métodos , Citoplasma/metabolismo , Citosol/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Evolución Molecular , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
9.
Sci Rep ; 7(1): 8788, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821844

RESUMEN

Nearly one third of the eukaryotic proteome traverses the secretory pathway and most of these proteins are N-glycosylated in the lumen of the endoplasmic reticulum. N-glycans fulfill multiple structural and biological functions, and are crucial for productive folding of many glycoproteins. N-glycosylation involves the attachment of an oligosaccharide to selected asparagine residues in the sequence N-X-S/T (X ≠ P), a motif known as an N-glycosylation'sequon'. Mutations that create novel sequons can cause disease due to the destabilizing effect of a bulky N-glycan. Thus, an analogous process must have occurred during evolution, whenever ancestrally cytosolic proteins were recruited to the secretory pathway. Here, we show that during evolution N-glycosylation triggered a dual selection pressure on secretory pathway proteins: while sequons were positively selected in solvent exposed regions, they were almost completely eliminated from buried sites. This process is one of the sharpest evolutionary signatures of secretory pathway proteins, and was therefore critical for the evolution of an efficient secretory pathway.


Asunto(s)
Células Eucariotas/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Selección Genética , Animales , Células COS , Chlorocebus aethiops , Biología Computacional/métodos , Retículo Endoplásmico/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Glicoproteínas/química , Glicosilación , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica
10.
J Biol Chem ; 292(21): 8773-8785, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28428246

RESUMEN

Proteins are dynamic entities that populate conformational ensembles, and most functions of proteins depend on their dynamic character. Allostery, in particular, relies on ligand-modulated shifts in these conformational ensembles. Hsp70s are allosteric molecular chaperones with conformational landscapes that involve large rearrangements of their two domains (viz. the nucleotide-binding domain and substrate-binding domain) in response to adenine nucleotides and substrates. However, it remains unclear how the Hsp70 conformational ensemble is populated at each point of the allosteric cycle and how ligands control these populations. We have mapped the conformational species present under different ligand-binding conditions throughout the allosteric cycle of the Escherichia coli Hsp70 DnaK by two complementary methods, ion-mobility mass spectrometry and double electron-electron resonance. Our results obtained under biologically relevant ligand-bound conditions confirm the current picture derived from NMR and crystallographic data of domain docking upon ATP binding and undocking in response to ADP and substrate. Additionally, we find that the helical lid of DnaK is a highly dynamic unit of the structure in all ligand-bound states. Importantly, we demonstrate that DnaK populates a partially docked state in the presence of ATP and substrate and that this state represents an energy minimum on the DnaK allosteric landscape. Because Hsp70s are emerging as potential drug targets for many diseases, fully mapping an allosteric landscape of a molecular chaperone like DnaK will facilitate the development of small molecules that modulate Hsp70 function via allosteric mechanisms.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Modelos Moleculares , Regulación Alostérica , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Estructura Secundaria de Proteína
11.
Mol Cell ; 63(5): 721-3, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27588598

RESUMEN

In this issue of Molecular Cell, Behnke et al. (2016) describe a novel cell-based peptide-binding assay and use it to analyze the binding specificities of the endoplasmic reticulum Hsp70 chaperone and its co-chaperones and to probe their different roles in protein quality control.


Asunto(s)
Proteínas de Choque Térmico/análisis , Chaperonas Moleculares/análisis , Animales , Retículo Endoplásmico/química , Proteínas HSP70 de Choque Térmico/análisis , Humanos
12.
Cell Rep ; 11(5): 759-69, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25921532

RESUMEN

Protein folding in cells is regulated by networks of chaperones, including the heat shock protein 70 (Hsp70) system, which consists of the Hsp40 cochaperone and a nucleotide exchange factor. Hsp40 mediates complex formation between Hsp70 and client proteins prior to interaction with Hsp90. We used mass spectrometry (MS) to monitor assemblies formed between eukaryotic Hsp90/Hsp70/Hsp40, Hop, p23, and a client protein, a fragment of the glucocorticoid receptor (GR). We found that Hsp40 promotes interactions between the client and Hsp70, and facilitates dimerization of monomeric Hsp70. This dimerization is antiparallel, stabilized by post-translational modifications (PTMs), and maintained in the stable heterohexameric client-loading complex Hsp902Hsp702HopGR identified here. Addition of p23 to this client-loading complex induces transfer of GR onto Hsp90 and leads to expulsion of Hop and Hsp70. Based on these results, we propose that Hsp70 antiparallel dimerization, stabilized by PTMs, positions the client for transfer from Hsp70 to Hsp90.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Dimerización , Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Humanos , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Mol Biol ; 427(7): 1575-88, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25683596

RESUMEN

Hsp70 molecular chaperones are implicated in a wide variety of cellular processes, including protein biogenesis, protection of the proteome from stress, recovery of proteins from aggregates, facilitation of protein translocation across membranes, and more specialized roles such as disassembly of particular protein complexes. It is a fascinating question to ask how the mechanism of these deceptively simple molecular machines is matched to their roles in these wide-ranging processes. The key is a combination of the nature of the recognition and binding of Hsp70 substrates and the impact of Hsp70 action on their substrates. In many cases, the binding, which relies on interaction with an extended, accessible short hydrophobic sequence, favors more unfolded states of client proteins. The ATP-mediated dissociation of the substrate thus releases it in a relatively less folded state for downstream folding, membrane translocation, or hand-off to another chaperone. There are cases, such as regulation of the heat shock response or disassembly of clathrin coats, however, where binding of a short hydrophobic sequence selects conformational states of clients to favor their productive participation in a subsequent step. This Perspective discusses current understanding of how Hsp70 molecular chaperones recognize and act on their substrates and the relationships between these fundamental processes and the functional roles played by these molecular machines.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Animales , Proteínas HSP70 de Choque Térmico/química , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Cuaternaria de Proteína , Desplegamiento Proteico
14.
Cell ; 151(6): 1296-307, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217711

RESUMEN

The allosteric mechanism of Hsp70 molecular chaperones enables ATP binding to the N-terminal nucleotide-binding domain (NBD) to alter substrate affinity to the C-terminal substrate-binding domain (SBD) and substrate binding to enhance ATP hydrolysis. Cycling between ATP-bound and ADP/substrate-bound states requires Hsp70s to visit a state with high ATPase activity and fast on/off kinetics of substrate binding. We have trapped this "allosterically active" state for the E. coli Hsp70, DnaK, and identified how interactions among the NBD, the ß subdomain of the SBD, the SBD α-helical lid, and the conserved hydrophobic interdomain linker enable allosteric signal transmission between ligand-binding sites. Allostery in Hsp70s results from an energetic tug-of-war between domain conformations and formation of two orthogonal interfaces: between the NBD and SBD, and between the helical lid and the ß subdomain of the SBD. The resulting energetic tension underlies Hsp70 functional properties and enables them to be modulated by ligands and cochaperones and "tuned" through evolution.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Dominio Catalítico , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
15.
Biochemistry ; 50(33): 7117-31, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21770428

RESUMEN

Translocation of bacterial toxins or effectors into host cells using the type III secretion (T3S) system is a conserved mechanism shared by many Gram-negative pathogens. Pseudomonas aeruginosa injects different proteins across the plasma membrane of target cells, altering the normal metabolism of the host. Protein translocation presumably occurs through a proteinaceous transmembrane pore formed by two T3S secreted protein translocators, PopB and PopD. Unfolded translocators are secreted through the T3S needle prior to insertion into the target membrane. Purified PopB and PopD form pores in model membranes. However, their tendency to form heterogeneous aggregates in solution had hampered the analysis of how these proteins undergo the transition from a denatured state to a membrane-inserted state. Translocators were purified as stable complexes with the cognate chaperone PcrH and isolated from the chaperone using 6 M urea. We report here the assembly of stable transmembrane pores by dilution of urea-denatured translocators in the presence of membranes. PopB and PopD spontaneously bound liposomes containing anionic phospholipids and cholesterol in a pH-dependent manner as observed by two independent assays, time-resolved Förster resonance energy transfer and sucrose-step gradient ultracentrifugation. Using Bodipy-labeled proteins, we found that PopB interacts with PopD on the membrane surface as determined by excitation energy migration and fluorescence quenching. Stable transmembrane pores are more efficiently assembled at pH <5.0, suggesting that acidic residues might be involved in the initial membrane binding and/or insertion. Altogether, the experimental setup described here represents an efficient method for the reconstitution and analysis of membrane-inserted translocators.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Liposomas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/química , Toxinas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/metabolismo , Transporte Biológico , Microscopía por Crioelectrón , Transferencia Resonante de Energía de Fluorescencia , Chaperonas Moleculares/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/aislamiento & purificación , Unión Proteica , Transporte de Proteínas , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Espectrometría de Fluorescencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Biopolymers ; 94(6): 742-52, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20564022

RESUMEN

Introducing biophysical labels into specific regions of large and dynamic multidomain proteins greatly facilitates mechanistic analysis. Ligation of expressed domains that are labeled in a desired manner before assembly of the intact molecular machine provides such a strategy. We have elaborated an experimental route using expressed protein ligation (EPL) to create an Hsp70 molecular chaperone (the E. coli Hsp70, DnaK) where only one of the two constituent domains was labeled, in this case with NMR active isotopes, allowing visualization of the single domain in the context of the two domain protein. Several technical obstacles were overcome, including choice of site for ligation with retention of function, optimization of ligation yield, and purification from unreacted domains. Ligated semilabeled DnaK was successfully produced with a Cys residue at position 383, and the ligated product harboring the Cys mutation was confirmed to be functional and identical to an expressed Cys-containing two-domain construct. The NMR spectrum of the segmentally labeled protein was considerably simplified, enabling unequivocal assignment and enhanced analysis of dynamics, as a prelude to exploring the energy landscape for allostery in the Hsp70 family.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Inteínas , Sustitución de Aminoácidos , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/genética , Marcaje Isotópico/métodos , Mutación Missense , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
Biopolymers ; 92(3): 201-11, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19280642

RESUMEN

Photoaffinity crosslinking comprises a group of invaluable techniques used to investigate in detail a binding interaction between two polypeptides. As the diverse photo crosslinking techniques available display inherent differences, the method of choice will provide specific information about a particular system under study. We used two complementary crosslinking approaches: photo-induced crosslinking of unmodified proteins (PICUP) and benzophenone-mediated (BPM) crosslinking to extensively examine the interaction between the signal recognition particle (SRP) and signal sequences. Signal peptide binding by SRP presents a central puzzle in the protein targeting process because signal sequences must be recognized with fidelity but lack strict primary structural homology. The concurrent use of PICUP and BPM crosslinking to link signal peptides to E. coli SRP allowed us to explore the crosslinking pattern resulting from using different crosslinking chemistries, varying the position of the photoprobe in the hydrophobic core of the signal sequence, and shifting the crosslinking reactive group away from the signal peptide backbone. By PICUP, signal peptides crosslinked exclusively to the NG domain of the SRP protein Ffh, regardless of the position of the reactive residue. Benzophenone-modified amino acids preferentially crosslinked the signal peptide to the C-terminal (M) domain of Ffh. We conclude that signal peptide binding is largely mediated by the M domain. Importantly, our data also indicate intimate, at least transient, contacts between the hydrophobic core of the signal peptide and the NG domain. These results reopen the possibility of a direct involvement of the NG domain in signal sequence recognition.


Asunto(s)
Benzofenonas/química , Reactivos de Enlaces Cruzados/química , Proteínas de Escherichia coli/química , Partícula de Reconocimiento de Señal/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Estructura Molecular , Señales de Clasificación de Proteína
18.
Microbiology (Reading) ; 155(Pt 2): 635-641, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19202112

RESUMEN

Molecular aspects of the circadian clock in the cyanobacterium Synechococcus elongatus have been described in great detail. Three-dimensional structures have been determined for the three proteins, KaiA, KaiB and KaiC, that constitute a central oscillator of the clock. Moreover, a temperature-compensated circadian rhythm of KaiC phosphorylation can be reconstituted in vitro with the addition of KaiA, KaiB and ATP. These data suggest a relatively simple circadian system in which a single oscillator provides temporal information for all downstream processes. However, in vivo the situation is more complex, and additional components contribute to the maintenance of a normal period, the resetting of relative phases of circadian oscillations, and the control of rhythms of gene expression. We show here that two well-studied promoters in the S. elongatus genome report different circadian periods of expression under a given set of conditions in wild-type as well as mutant genetic backgrounds. Moreover, the period differs between these promoters with respect to modulation by light intensity, growth phase, and the presence or absence of a promoter-recognition subunit of RNA polymerase. These data contrast sharply with the current clock model in which a single Kai-based oscillator governs circadian period. Overall, these findings suggest that complex interactions among the circadian oscillator, perhaps other oscillators, and other cellular machinery result in a clock that is plastic and sensitive to the environment and to the physiological state of the cell.


Asunto(s)
Ritmo Circadiano , Regulación Bacteriana de la Expresión Génica , Synechococcus/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ritmo Circadiano/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Luz , Regiones Promotoras Genéticas , Synechococcus/genética , Synechococcus/efectos de la radiación
19.
Biopolymers ; 90(3): 307-19, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17918185

RESUMEN

The information for correct localization of newly synthesized proteins in both prokaryotes and eukaryotes resides in self-contained, often transportable targeting sequences. Of these, signal sequences specify that a protein should be secreted from a cell or incorporated into the cytoplasmic membrane. A central puzzle is presented by the lack of primary structural homology among signal sequences, although they share common features in their sequences. Synthetic signal peptides have enabled a wide range of studies of how these "zipcodes" for protein secretion are decoded and used to target proteins to the protein machinery that facilitates their translocation across and integration into membranes. We review research on how the information in signal sequences enables their passenger proteins to be correctly and efficiently localized. Synthetic signal peptides have made possible binding and crosslinking studies to explore how selectivity is achieved in recognition by the signal sequence-binding receptors, signal recognition particle, or SRP, which functions in all organisms, and SecA, which functions in prokaryotes and some organelles of prokaryotic origins. While progress has been made, the absence of atomic resolution structures for complexes of signal peptides and their receptors has definitely left many questions to be answered in the future.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína , Partícula de Reconocimiento de Señal/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Reactivos de Enlaces Cruzados/química , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética
20.
Methods Mol Biol ; 362: 115-29, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17417005

RESUMEN

The unicellular cyanobacterium Synechococcus elongatus PCC 7942 is the model organism for studying prokaryotic circadian rhythms. Although S. elongatus does not display an easily measurable overt circadian behavior, its gene expression is under circadian control; hence, a "behavior" is created by linking a cyanobacterial promoter to either the bacterial luxAB or firefly luc luciferase genes to create reporter fusions whose activity can be easily monitored by bioluminescence. Numerous vectors have been created in our lab for introducing luciferase reporter genes into the S. elongatus chromosome. A choice of methods and equipment to detect light production from the luciferase fusions provides a means for high-throughput, automated mutant screens as well as testing rhythms from two promoter fusions within the same cell culture.


Asunto(s)
Ritmo Circadiano/fisiología , Synechococcus/fisiología , Animales , Genes Reporteros , Ingeniería Genética , Vectores Genéticos , Luciferasas de la Bacteria/genética , Luciferasas de Luciérnaga/genética , Luminiscencia , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Plásmidos/genética , Conteo por Cintilación/instrumentación , Conteo por Cintilación/métodos , Synechococcus/genética , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA