Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2306295121, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38150498

RESUMEN

Focusing on the upside of negative events often promotes resilience. Yet, the underlying mechanisms that allow some people to spontaneously see the good in the bad remain unclear. The broaden-and-build theory of positive emotion has long suggested that positive affect, including positivity in the face of negative events, is linked to idiosyncratic thought patterns (i.e., atypical cognitive responses). Yet, evidence in support of this view has been limited, in part, due to difficulty in measuring idiosyncratic cognitive processes as they unfold. To overcome this barrier, we applied Inter-Subject Representational Similarity Analysis to test whether and how idiosyncratic neural responding supports positive reactions to negative experience. We found that idiosyncratic functional connectivity patterns in the brain's default network while resting after a negative experience predicts more positive descriptions of the event. This effect persisted when controlling for connectivity 1) before and during the negative experience, 2) before, during, and after a neutral experience, and 3) between other relevant brain regions (i.e., the limbic system). The relationship between idiosyncratic default network responding and positive affect was largely driven by functional connectivity patterns between the ventromedial prefrontal cortex and the rest of the default network and occurred relatively quickly during rest. We identified post-encoding rest as a key moment and the default network as a key brain system in which idiosyncratic responses correspond with seeing the good in the bad.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Vías Nerviosas/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Corteza Prefrontal
2.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865262

RESUMEN

We are often surprised when an interaction we remember positively is recalled by a peer negatively. What colors social memories with positive versus negative hues? We show that when resting after a social experience, individuals showing similar default network responding subsequently remember more negative information, while individuals showing idiosyncratic default network responding remember more positive information. Results were specific to rest after the social experience (as opposed to before or during the social experience, or rest after a nonsocial experience). The results provide novel neural evidence in support of the "broaden and build" theory of positive emotion, which posits that while negative affect confines, positive affect broadens idiosyncrasy in cognitive processing. For the first time, we identified post-encoding rest as a key moment and the default network as a key brain system in which negative affect homogenizes, whereas positive affect diversifies social memories.

3.
Depress Anxiety ; 38(6): 615-625, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33621379

RESUMEN

BACKGROUND: Poor social connection is a central feature of posttraumatic stress disorder (PTSD), but little is known about the neurocognitive processes associated with social difficulties in this population. We examined recruitment of the default network and behavioral responses during social working memory (SWM; i.e., maintaining and manipulating social information on a moment-to-moment basis) in relation to PTSD and social connection. METHODS: Participants with PTSD (n = 31) and a trauma-exposed control group (n = 21) underwent functional magnetic resonance imaging while completing a task in which they reasoned about two or four people's relationships in working memory (social condition) and alphabetized two or four people's names in working memory (nonsocial condition). Participants also completed measures of social connection (e.g., loneliness, social network size). RESULTS: Compared to trauma-exposed controls, individuals with PTSD reported smaller social networks (p = .032) and greater loneliness (p = .038). Individuals with PTSD showed a selective deficit in SWM accuracy (p = .029) and hyperactivation in the default network, particularly in the dorsomedial subsystem, on trials with four relationships to consider. Moreover, default network hyperactivation in the PTSD group (vs. trauma-exposed group) differentially related to social network size and loneliness (p's < .05). Participants with PTSD also showed less resting state functional connectivity within the dorsomedial subsystem than controls (p = .002), suggesting differences in the functional integrity of a subsystem key to SWM. CONCLUSIONS: SWM abnormalities in the default network may be a basic mechanism underlying poorer social connection in PTSD.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Soledad , Imagen por Resonancia Magnética , Memoria a Corto Plazo , Trastornos por Estrés Postraumático/diagnóstico por imagen
4.
J Cogn Neurosci ; 32(9): 1672-1687, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32379001

RESUMEN

Social scientists have documented the power of being heard: Disclosing emotional experiences to others promotes mental and physical health. Yet, far less is known about how listeners digest the sensitive information people share with them. We combined brain imaging and text analysis methods with a naturalistic emotional disclosure paradigm to assess how listeners form memories of others' disclosures. Neural and linguistic evidence support the hypothesis that listeners consolidate memories for others' disclosures during rest after listening and that their ability to do so facilitates subsequently providing the speakers with support. In Study 1, brain imaging methods showed that functional connectivity between the dorsomedial subsystem of the default network and frontoparietal control network increased during rest after listening to others' disclosures and predicted subsequent memory for their experiences. Moreover, graph analytic methods demonstrated that the left anterior temporal lobe may function as a connector hub between these two networks when consolidating memory for disclosures. In Study 2, linguistic analyses revealed other-focused thought increased during rest after listening to others' disclosures and predicted not only memory for the information disclosed but also whether listeners supported the speakers the next day. Collectively, these findings point to the important role of memory consolidation during rest in helping listeners respond supportively to others' disclosures. In our increasingly busy lives, pausing to briefly rest may not only help us care for ourselves but also help us care for others.


Asunto(s)
Revelación , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Lingüística , Descanso
5.
Soc Cogn Affect Neurosci ; 15(1): 63-73, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32064502

RESUMEN

We often interact with multiple people at a time and consider their various points of view to facilitate smooth social interaction. Yet, how our brains track multiple mental states at once, and whether skill in this domain links to social integration, remains underspecified. To fill this gap, we developed a novel social working memory paradigm in which participants manage two- or four-people's mental states in working memory, as well as control trials in which they alphabetize two- or four-people's names in working memory. In Study 1, we found that the dorsomedial subsystem of the default network shows relative increases in activity with more mental states managed in working memory. In contrast, this subsystem shows relative decreases in activity with more non-mental state information (the number of names alphabetized) managed in working memory. In Study 2, only individual differences in managing mental states in working memory, specifically on trials that posed the greatest mental state load to working memory, correlated with social integration. Collectively, these findings add further support to the hypothesis that social working memory relies on partially distinct brain systems and may be a key ingredient to success in a social world.


Asunto(s)
Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Teoría de la Mente , Adulto , Encéfalo/fisiología , Femenino , Humanos , Individualidad , Imagen por Resonancia Magnética , Masculino , Integración Social
6.
PLoS One ; 11(4): e0153487, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27082641

RESUMEN

Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress. For this purpose, we employed optogenetic systems that use light to precisely and reversibly activate either the Raf/ERK or the AKT pathway. We find that preconditioning activation of the Raf/ERK or the AKT pathway immediately before oxidant exposure provides significant protection to cells. Notably, a 15-minute transient activation of the Raf/ERK pathway is able to protect PC12 cells against oxidant strike that is applied 12 hours later, while the transient activation of the AKT pathway fails to protect PC12 cells in such a scenario. On the other hand, if the pathways are activated after the oxidative insult, i.e. postconditioning, the AKT pathway conveys greater protective effect than the Raf/ERK pathway. We find that postconditioning AKT activation has an optimal delay period of 2 hours. When the AKT pathway is activated 30min after the oxidative insult, it exhibits very little protective effect. Therefore, the precise timing of the pathway activation is crucial in determining its protective effect against oxidative injury. The optogenetic platform, with its precise temporal control and its ability to activate specific pathways, is ideal for the mechanistic dissection of intracellular pathways in protection against oxidative stress.


Asunto(s)
Citoprotección , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Estrés Oxidativo/fisiología , Quinasas raf/metabolismo , Animales , Citoprotección/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Células 3T3 NIH , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA