RESUMEN
Huntington's disease is a neurodegenerative disease caused by an expanded polyQ stretch within Huntingtin (HTT) that renders the protein aggregation-prone, ultimately resulting in the formation of amyloid fibrils. A trimeric chaperone complex composed of Hsc70, DNAJB1 and Apg2 can suppress and reverse the aggregation of HTTExon1Q48. DNAJB1 is the rate-limiting chaperone and we have here identified and characterized the binding interface between DNAJB1 and HTTExon1Q48. DNAJB1 exhibits a HTT binding motif (HBM) in the hinge region between C-terminal domains (CTD) I and II and binds to the polyQ-adjacent proline rich domain (PRD) of soluble as well as aggregated HTT. The PRD of HTT represents an additional binding site for chaperones. Mutation of the highly conserved H244 of the HBM of DNAJB1 completely abrogates the suppression and disaggregation of HTT fibrils by the trimeric chaperone complex. Notably, this mutation does not affect the binding and remodeling of any other protein substrate, suggesting that the HBM of DNAJB1 is a specific interaction site for HTT. Overexpression of wt DNAJB1, but not of DNAJB1H244A can prevent the accumulation of HTTExon1Q97 aggregates in HEK293 cells, thus validating the biological significance of the HBM within DNAJB1.
Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Amiloide/química , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Agregado de ProteínasRESUMEN
Although successful in the structural determination of ordered biomolecules, the spectroscopic investigation of oligopeptides in solution is hindered by their complex and rapidly changing conformational ensemble. The measured circular dichroism (CD) spectrum of an oligopeptide is an ensemble average over all microstates, severely limiting its interpretation, in contrast to ordered biomolecules. Spectral deconvolution methods to estimate the secondary structure contributions in the ensemble are still mostly based on databases of larger ordered proteins. Here, we establish how the interpretation of CD spectra of oligopeptides can be enhanced by the ability to compute the same observable from a set of atomic coordinates. Focusing on two representative oligopeptides featuring a known propensity toward an α-helical and ß-hairpin motif, respectively, we compare and cross-validate the structural information coming from deconvolution of the experimental CD spectra, sequence-based de novo structure prediction, and molecular dynamics simulations based on enhanced sampling methods. We find that small conformational variations can give rise to significant changes in the CD signals. While for the simpler conformational landscape of the α-helical peptide de novo structure prediction can already give reasonable agreement with the experiment, an extended ensemble of conformers needs to be considered for the ß-hairpin sequence.
Asunto(s)
Oligopéptidos/química , Secuencia de Aminoácidos , Dicroismo Circular , Análisis por Conglomerados , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina betaRESUMEN
Ceramic capillary membranes conditioned for virus filtration via functionalization with n-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) are analyzed with respect to their virus retention capacity when using feed solutions based on monovalent and divalent salts (NaCl, MgCl2). The log reduction value (LRV) by operating in dead-end mode using the model bacteriophage MS2 with a diameter of 25 nm and an IEP of 3.9 is as high as 9.6 when using feeds containing MgCl2. In contrast, a lesser LRV of 6.4 is observed for feed solutions based on NaCl. The TPDA functionalized surface is simulated at the atomistic scale using explicit-solvent molecular dynamics in the presence of either Na+ or Mg2+ ions. Computational prediction of the binding free energy reveals that the Mg2+ ions remain preferentially adsorbed at the surface, whereas Na+ ions form a weakly bound dissolved ionic layer. The charge shielding between surface and amino groups by the adsorbed Mg2+ ions leads to an upright orientation of the TPDA molecules as opposed to a more tilted orientation in the presence of Na+ ions. The resulting better accessibility of the TPDA molecules is very likely responsible for the enhanced virus retention capacity using a feed solution with Mg2+ ions.
RESUMEN
The initial nucleation of platinum clusters after the reduction of K(2)PtCl(4) in aqueous solution is studied by means of first principles molecular dynamics simulations. A reaction mechanism leading to a Pt dimer is revealed both by gas-phase simulations and by simulations which model the solution environment. The key step of the observed reaction process is the formation of a Pt-Pt bond between a Pt(I) complex and an unreduced Pt(II) complex. In light of this result, we discuss the reduction process leading to the formation of platinum nanoparticles. In the generally accepted model, the nucleation of Pt particles starts only when a critical concentration of Pt(0) atoms is reached. Here, we discuss a complementary mechanism where metal-metal bonds form between Pt complexes in higher oxidation states. This is consistent with a number of experimental results which show that a high concentration of zerovalent atoms is not necessary to start the nucleation.