Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 34(27): e2201826, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35475584

RESUMEN

Stretching a coiled carbon nanotube (CNT) yarn can provide large, reversible electrochemical capacitance changes, which convert mechanical energy to electricity. Here, it is shown that the performance of these "twistron" harvesters can be increased by optimizing the alignment of precursor CNT forests, plastically stretching the precursor twisted yarn, applying much higher tensile loads during precoiling twist than for coiling, using electrothermal pulse annealing under tension, and incorporating reduced graphene oxide nanoplates. The peak output power for a 1 and a 30 Hz sinusoidal deformation are 0.73 and 3.19 kW kg-1 , respectively, which are 24- and 13-fold that of previous twistron harvesters at these respective frequencies. This performance at 30 Hz is over 12-fold that of other prior-art mechanical energy harvesters for frequencies between 0.1 and 600 Hz. The maximum energy conversion efficiency is 7.2-fold that for previous twistrons. Twistron anode and cathode yarn arrays are stretched 180° out-of-phase by locating them in the negative and positive compressibility directions of hinged wine-rack frames, thereby doubling the output voltage and reducing the input mechanical energy.

2.
ACS Nano ; 15(7): 12267-12275, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34184878

RESUMEN

The advancement of ion transport applications will require the development of functional materials with a high ionic conductivity that is stable, scalable, and micro-patternable. We report unusually high ionic conductivity of Li+, Na+, and K+ in 2D MoS2 nanofilm exceeding 1 S/cm, which is more than 2 orders of magnitude higher when compared to that of conventional solid ionic materials. The high ion conductivity of different cations can be explained by the mitigated activation energy via percolative ion channels in 2H-MoS2, including the 1D ion channel at the grain boundary, as confirmed by modeling and analysis. We obtain field-effect modulation of ion transport with a high on/off ratio. The ion channel is large-scale patternable by conventional lithography, and the thickness can be tuned down to a single atomic layer. The findings yield insight into the ion transport mechanism of van der Waals solid materials and guide the development of future ionic devices owing to the facile and scalable device fabrication with superionic conductivity.

3.
Science ; 371(6528): 494-498, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33510023

RESUMEN

Success in making artificial muscles that are faster and more powerful and that provide larger strokes would expand their applications. Electrochemical carbon nanotube yarn muscles are of special interest because of their relatively high energy conversion efficiencies. However, they are bipolar, meaning that they do not monotonically expand or contract over the available potential range. This limits muscle stroke and work capacity. Here, we describe unipolar stroke carbon nanotube yarn muscles in which muscle stroke changes between extreme potentials are additive and muscle stroke substantially increases with increasing potential scan rate. The normal decrease in stroke with increasing scan rate is overwhelmed by a notable increase in effective ion size. Enhanced muscle strokes, contractile work-per-cycle, contractile power densities, and energy conversion efficiencies are obtained for unipolar muscles.


Asunto(s)
Órganos Artificiales , Contracción Muscular , Músculos , Nanotubos de Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA