Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260331

RESUMEN

Brain development is highly dynamic and asynchronous, marked by the sequential maturation of functional circuits across the brain. The timing and mechanisms driving circuit maturation remain elusive due to an inability to identify and map maturing neuronal populations. Here we create DevATLAS (Developmental Activation Timing-based Longitudinal Acquisition System) to overcome this obstacle. We develop whole-brain mapping methods to construct the first longitudinal, spatiotemporal map of circuit maturation in early postnatal mouse brains. Moreover, we uncover dramatic impairments within the deep cortical layers in a neurodevelopmental disorders (NDDs) model, demonstrating the utility of this resource to pinpoint when and where circuit maturation is disrupted. Using DevATLAS, we reveal that early experiences accelerate the development of hippocampus-dependent learning by increasing the synaptically mature granule cell population in the dentate gyrus. Finally, DevATLAS enables the discovery of molecular mechanisms driving activity-dependent circuit maturation.

2.
Hum Mol Genet ; 31(R1): R84-R96, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36057282

RESUMEN

Linkage disequilibrium and the incomplete regulatory annotation of the noncoding genome complicates the identification of functional noncoding genetic variants and their causal association with disease. Current computational methods for variant prioritization have limited predictive value, necessitating the application of highly parallelized experimental assays to efficiently identify functional noncoding variation. Here, we summarize two distinct approaches, massively parallel reporter assays and CRISPR-based pooled screens and describe their flexible implementation to characterize human noncoding genetic variation at unprecedented scale. Each approach provides unique advantages and limitations, highlighting the importance of multimodal methodological integration. These multiplexed assays of variant effects are undoubtedly poised to play a key role in the experimental characterization of noncoding genetic risk, informing our understanding of the underlying mechanisms of disease-associated loci and the development of more robust predictive classification algorithms.


Asunto(s)
Genoma , Genómica , Humanos , Desequilibrio de Ligamiento , Algoritmos , Estudio de Asociación del Genoma Completo
3.
Science ; 377(6608): eabi8654, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35981026

RESUMEN

Predicting the function of noncoding variation is a major challenge in modern genetics. In this study, we used massively parallel reporter assays to screen 5706 variants identified from genome-wide association studies for both Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), identifying 320 functional regulatory variants (frVars) across 27 loci, including the complex 17q21.31 region. We identified and validated multiple risk loci using CRISPR interference or excision, including complement 4 (C4A) and APOC1 in AD and PLEKHM1 and KANSL1 in PSP. Functional variants disrupt transcription factor binding sites converging on enhancers with cell type-specific activity in PSP and AD, implicating a neuronal SP1-driven regulatory network in PSP pathogenesis. These analyses suggest that noncoding genetic risk is driven by common genetic variants through their aggregate activity on specific transcriptional programs.


Asunto(s)
Enfermedad de Alzheimer , Cromosomas Humanos Par 17 , Redes Reguladoras de Genes , Variación Genética , Regiones no Traducidas , Enfermedad de Alzheimer/genética , Cromosomas Humanos Par 17/genética , Genes Reporteros , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Factores de Riesgo , Parálisis Supranuclear Progresiva/genética , Regiones no Traducidas/genética
4.
Proc Natl Acad Sci U S A ; 115(40): 10172-10177, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30232263

RESUMEN

Alzheimer's disease (AD), the most common form of dementia, is characterized by the abnormal accumulation of amyloid plaques and hyperphosphorylated tau aggregates, as well as microgliosis. Hemizygous missense variants in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) are associated with elevated risk for developing late-onset AD. These variants are hypothesized to result in loss of function, mimicking TREM2 haploinsufficiency. However, the consequences of TREM2 haploinsufficiency on tau pathology and microglial function remain unknown. We report the effects of partial and complete loss of TREM2 on microglial function and tau-associated deficits. In vivo imaging revealed that microglia from aged TREM2-haploinsufficient mice show a greater impairment in their injury response compared with microglia from aged TREM2-KO mice. In transgenic mice expressing mutant human tau, TREM2 haploinsufficiency, but not complete loss of TREM2, increased tau pathology. In addition, whereas complete TREM2 deficiency protected against tau-mediated microglial activation and atrophy, TREM2 haploinsufficiency elevated expression of proinflammatory markers and exacerbated atrophy at a late stage of disease. The differential effects of partial and complete loss of TREM2 on microglial function and tau pathology provide important insights into the critical role of TREM2 in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Haploinsuficiencia , Hemicigoto , Glicoproteínas de Membrana , Microglía/metabolismo , Mutación Missense , Receptores Inmunológicos , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Microglía/patología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
5.
Ann Clin Transl Neurol ; 5(5): 616-629, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29761124

RESUMEN

OBJECTIVE: Changes in progranulin (GRN) expression have been hypothesized to alter risk for Alzheimer's disease (AD). We investigated the relationship between GRN expression in peripheral blood and clinical diagnosis of AD and mild cognitive impairment (MCI). METHODS: Peripheral blood progranulin gene expression was measured, using microarrays from Alzheimer's (n = 186), MCI (n = 118), and control (n = 204) subjects from the University of California San Francisco Memory and Aging Center (UCSF-MAC) and two independent published series (AddNeuroMed and ADNI). GRN gene expression was correlated with clinical, demographic, and genetic data, including APOE haplotype and the GRN rs5848 single-nucleotide polymorphism. Finally, we assessed progranulin protein levels, using enzyme-linked immunosorbent assay, and methylation status using methylation microarrays. RESULTS: We observed an increase in blood progranulin gene expression and a decrease in GRN promoter methylation in males (P = 0.007). Progranulin expression was 13% higher in AD and MCI patients compared with controls in the UCSF-MAC cohort (F2,505 = 10.41, P = 3.72*10-5). This finding was replicated in the AddNeuroMed (F2,271 = 17.9, P = 4.83*10-8) but not the ADNI series. The rs5848 SNP (T-allele) predicted decreased blood progranulin gene expression (P = 0.03). The APOE4 haplotype was positively associated with progranulin expression independent of diagnosis (P = 0.04). Finally, we did not identify differences in plasma progranulin protein levels or gene methylation between diagnostic categories. INTERPRETATION: Progranulin mRNA is elevated in peripheral blood of patients with AD and MCI and its expression is associated with numerous genetic and demographic factors. These data suggest a role in the pathogenesis of neurodegenerative dementias besides frontotemporal dementia.

6.
Epilepsia Open ; 3(1): 55-65, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29588988

RESUMEN

Objective: To perform a systematic review and meta-analysis of real-world evidence for the use of low-frequency repetitive transcranial magnetic stimulation (rTMS) in the treatment of drug-resistant epilepsy. Methods: We systematically searched PubMed, Scopus, Medline, and clinicaltrials.gov for all relevant articles. Relevant patient and stimulation predictors as well as seizure outcomes were assessed. For studies with and without individual participant data (IPD), the primary outcomes were the rate of "favorable response" (reduction in seizure frequency ≥50%) and pooled event rate of mean reduction in seizure frequency, respectively. Outcomes were assessed with comparative statistics and random-effects meta-analysis models. Results: Of 3,477 identified articles, 12 met eligibility and were included in this review. We were able to obtain IPD for 5 articles constituting 34 participants. Univariate analysis on IPD identified greater favorable response event rates between participants with temporal seizure focus versus extratemporal (50% vs. 14%, p = 0.045) and between participants who were stimulated with a figure-8 coil versus other types (47% vs. 0%, p = 0.01). We also performed study-level meta-analysis on the remaining 7 studies without IPD, which included 212 participants. The pooled mean event rate of 50% seizure reduction using low-frequency rTMS was 30% (95% confidence interval [CI] 12-57%). Sensitivity analysis revealed that studies with a mean age ≤21 years and studies using targeted stimulation had the highest seizure reduction rates compared to studies with a mean age >21 years (69% vs. 18%) and not using a targeted stimulation (47% vs. 14-20%). Moreover, we identified high interstudy heterogeneity, moderate study bias, and high publication bias. Significance: Real-world evidence suggests that low-frequency rTMS using a figure-8 coil may be an effective therapy for the treatment of drug-resistant epilepsy in pediatric patients. This meta-analysis can inform the design and expedite recruitment of a subsequent randomized clinical trial.

7.
Neuron ; 96(1): 130-144.e6, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28957664

RESUMEN

Individuals suffering from substance-use disorders develop strong associations between the drug's rewarding effects and environmental cues, creating powerful, enduring triggers for relapse. We found that dephosphorylated, nuclear histone deacetylase 5 (HDAC5) in the nucleus accumbens (NAc) reduced cocaine reward-context associations and relapse-like behaviors in a cocaine self-administration model. We also discovered that HDAC5 associates with an activity-sensitive enhancer of the Npas4 gene and negatively regulates NPAS4 expression. Exposure to cocaine and the test chamber induced rapid and transient NPAS4 expression in a small subpopulation of FOS-positive neurons in the NAc. Conditional deletion of Npas4 in the NAc significantly reduced cocaine conditioned place preference and delayed learning of the drug-reinforced action during cocaine self-administration, without affecting cue-induced reinstatement of drug seeking. These data suggest that HDAC5 and NPAS4 in the NAc are critically involved in reward-relevant learning and memory processes and that nuclear HDAC5 limits reinstatement of drug seeking independent of NPAS4.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Histona Desacetilasas/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Animales , Condicionamiento Psicológico/fisiología , Relación Dosis-Respuesta a Droga , Comportamiento de Búsqueda de Drogas/fisiología , Extinción Psicológica , Miedo/fisiología , Miedo/psicología , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Cultivo Primario de Células , Ratas , Refuerzo en Psicología , Autoadministración
8.
Elife ; 52016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27661450

RESUMEN

Understanding how the brain captures transient experience and converts it into long lasting changes in neural circuits requires the identification and investigation of the specific ensembles of neurons that are responsible for the encoding of each experience. We have developed a Robust Activity Marking (RAM) system that allows for the identification and interrogation of ensembles of neurons. The RAM system provides unprecedented high sensitivity and selectivity through the use of an optimized synthetic activity-regulated promoter that is strongly induced by neuronal activity and a modified Tet-Off system that achieves improved temporal control. Due to its compact design, RAM can be packaged into a single adeno-associated virus (AAV), providing great versatility and ease of use, including application to mice, rats, flies, and potentially many other species. Cre-dependent RAM, CRAM, allows for the study of active ensembles of a specific cell type and anatomical connectivity, further expanding the RAM system's versatility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA