Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nanoscale ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993100

RESUMEN

The decoration of technologically relevant surfaces, such as metal oxides, with Single-Molecule Magnets (SMMs) constitutes a persistent challenge for the integration of these molecular systems into novel technologies and, in particular, for the development of spintronic and quantum devices. We used UHV thermal sublimation to deposit tetrairon(III) propeller-shaped SMMs (Fe4) as a single layer on a TiO2 ultrathin film grown on Cu(001). The properties of the molecular deposit were studied using a multi-technique approach based on standard topographic and spectroscopic measurements, which demonstrated that molecules remain largely intact upon deposition. Ultralow temperature X-ray Absorption Spectroscopy (XAS) with linearly and circularly polarized light was further employed to evaluate both the molecular organization and the magnetic properties of the Fe4 monolayer. X-ray Natural Linear Dichroism (XNLD) and X-ray Magnetic Circular Dichroism (XMCD) showed that molecules in a monolayer display a preferential orientation and an open magnetic hysteresis with pronounced quantum tunnelling steps up to 900 mK. However, unexpected extra features in the XAS and XMCD spectra disclosed a minority fraction of altered molecules, suggesting that the TiO2 film may be chemically non-innocent. The observed persistence of SMM behaviour on a metal oxide thin film opens new possibilities for the development of SMM-based hybrid systems.

2.
Dalton Trans ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984518

RESUMEN

Two new paramagnetic supramolecular helicates with the formula (X@[Ni2L3])3+ (X = Cl, or Br; L = a bis-pyrazolylpyridine ligand) have been prepared and are described. Helicates of this metal are very rare with virtually no prior examples of them acting as hosts of anionic species. The persistence of the new assemblies in solution has been demonstrated unambiguously by mass spectrometry and paramagnetic 1H NMR. This has allowed us to establish the preference of the coordination [Ni2] host for Cl- over Br-, in agreement with DFT calculations. These results show the promise of the use of metallohelicates as suitable systems for the selective encapsulation of specific anions in solution.

3.
Inorg Chem ; 63(17): 7912-7925, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38620046

RESUMEN

We designed [VO(bdhb)] (1') as a new electronic qubit containing an oxovanadium(IV) ion (S = 1/2) embraced by a single bis(ß-diketonato) ligand [H2bdhb = 1,3-bis(3,5-dioxo-1-hexyl)benzene]. The synthesis afforded three different crystal phases, all of which unexpectedly contain dimers with formula [(VO)2(bdhb)2] (1). A trigonal form (1h) with a honeycomb structure and 46% of solvent-accessible voids quantitatively transforms over time into a monoclinic solvatomorph 1m and minor amounts of a triclinic solventless phase (1a). In a static magnetic field, 1h and 1m have detectably slow magnetic relaxation at low temperatures through quantum tunneling and Raman mechanisms. Angle-resolved electron paramagnetic resonance (EPR) spectra on single crystals revealed signatures of low-dimensional magnetic behavior, which is solvatomorph-dependent, being the closest interdimer V···V separations (6.7-7.5 Å) much shorter than intramolecular V···V distances (11.9-12.1 Å). According to 1H diffusion ordered spectroscopy (DOSY) and EPR experiments, the complex adopts the desired monomeric structure in organic solution and its geometry was inferred from density functional theory (DFT) calculations. Spin relaxation measurements in a frozen toluene-d8/CD2Cl2 matrix yielded Tm values reaching 13 µs at 10 K, and coherent spin manipulations were demonstrated by Rabi nutation experiments at 70 K. The neutral quasi-macrocyclic structure, featuring nuclear spin-free donors and additional possibilities for chemical functionalization, makes 1' a new convenient spin-coherent building block in quantum technologies.

4.
Chemistry ; 29(69): e202301005, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37677125

RESUMEN

Over the past two decades, the chirality-induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time-resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady-state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi-technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS-polarized ET.

5.
Inorg Chem ; 62(26): 10171-10184, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37345231

RESUMEN

Oligo-α-pyridylamides offer an appealing route to polyiron complexes with short Fe-Fe separations and large room-temperature magnetic moments. A derivative of tris(2-aminoethyl)amine (H6tren) containing three oligo-α-pyridylamine branches and 13 nitrogen donors (H6L) reacts with [Fe2(Mes)4] to yield an organic nanocage built up by two tripodal ligands with interdigitated branches (HMes = mesitylene). The nanocage has crystallographic D3 symmetry but hosts a remarkably unsymmetric hexairon-oxo core, with a central Fe5(µ5-O) square pyramid, two oxygen donors bridging basal sites, and an additional Fe center residing in one of the two tren-like pockets. Bond valence sum (BVS) analysis, density functional theory (DFT) calculations, and electrochemical data were then used to establish the protonation state of oxygen atoms and the formal oxidation states of the metals. For this purpose, a specialized set of BVS parameters was devised for Fe2+-N3- bonds with nitrogen donors of oligo-α-pyridylamides. This allowed us to formulate the compound as [Fe6O2(OH)(H3L)L], with nominally four FeII ions and two FeIII ions. Mössbauer spectra indicate that the compound contains two unique FeII sites, identified as a pair of closely spaced hydroxo-bridged metal ions in the central Fe5(µ5-O) pyramid, and a substantially valence-delocalized FeII2FeIII2 unit. Broken-symmetry DFT calculations predict strong ferromagnetic coupling between the two iron(II) ions, leading to a local S = 4 state that persists to room temperature and explaining the large magnetic moment measured at 300 K. The compound behaves as a single-molecule magnet, with magnetization dynamics detectable in zero static field and dominated by an Orbach-like mechanism with activation parameters Ueff/kB = 49(2) K and τ0 = 4(2) × 10-10 s.

6.
Inorg Chem Front ; 11(1): 186-195, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38221947

RESUMEN

We herein investigate the heterobimetallic lantern complexes [PtVO(SOCR)4] as charge neutral electronic qubits based on vanadyl complexes (S = 1/2) with nuclear spin-free donor atoms. The derivatives with R = Me (1) and Ph (2) give highly resolved X-band EPR spectra in frozen CH2Cl2/toluene solution, which evidence the usual hyperfine coupling with the 51V nucleus (I = 7/2) and an additional superhyperfine interaction with the I = 1/2 nucleus of the 195Pt isotope (natural abundance ca. 34%). DFT calculations ascribe the spin density delocalization on the Pt2+ ion to a combination of π and δ pathways, with the former representing the predominant channel. Spin relaxation measurements in frozen CD2Cl2/toluene-d8 solution between 90 and 10 K yield Tm values (1-6 µs in 1 and 2-11 µs in 2) which compare favorably with those of known vanadyl-based qubits in similar matrices. Coherent spin manipulations indeed prove possible at 70 K, as shown by the observation of Rabi oscillations in nutation experiments. The results indicate that the heavy Group 10 metal ion is not detrimental to the coherence properties of the vanadyl moiety and that Pt-VO lanterns can be used as robust spin-coherent building blocks in materials science and quantum technologies.

7.
Dalton Trans ; 51(44): 16790-16794, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36342410

RESUMEN

We provide definitive experimental proof that the archetypal string-like compound [Cr5(tpda)4(NCS)2] has alternating long and short Cr-Cr separations in the solid state, as conjectured by F. A. Cotton, rather than essentially equally spaced Cr atoms, as initially claimed (H2tpda = N2,N6-di(pyridin-2-yl)pyridine-2,6-diamine). Single-crystal X-ray data collected from 292 to 3 K revealed that the misinterpretation is caused by pseudo-merohedral twinning and that bond length alternation is enhanced at low temperature.

8.
Dalton Trans ; 50(22): 7571-7589, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33983354

RESUMEN

Iron-based extended metal atom chains (EMACs) are potentially high-spin molecules with axial magnetic anisotropy and thus candidate single-molecule magnets (SMMs). We herein compare the tetrairon(ii), halide-capped complexes [Fe4(tpda)3Cl2] (1Cl) and [Fe4(tpda)3Br2] (1Br), obtained by reacting iron(ii) dihalides with [Fe2(Mes)4] and N2,N6-di(pyridin-2-yl)pyridine-2,6-diamine (H2tpda) in toluene, under strictly anhydrous and anaerobic conditions (HMes = mesitylene). Detailed structural, electrochemical and Mössbauer data are presented along with direct-current (DC) and alternating-current (AC) magnetic characterizations. DC measurements revealed similar static magnetic properties for the two derivatives, with χMT at room temperature above that for independent spin carriers, but much lower at low temperature. The electronic structure of the iron(ii) ions in each derivative was explored by ab initio (CASSCF-NEVPT2-SO) calculations, which showed that the main magnetic axis of all metals is directed close to the axis of the chain. The outer metals, Fe1 and Fe4, have an easy-axis magnetic anisotropy (D = -11 to -19 cm-1, |E/D| = 0.05-0.18), while the internal metals, Fe2 and Fe3, possess weaker hard-axis anisotropy (D = 8-10 cm-1, |E/D| = 0.06-0.21). These single-ion parameters were held constant in the fitting of DC magnetic data, which revealed ferromagnetic Fe1-Fe2 and Fe3-Fe4 interactions and antiferromagnetic Fe2-Fe3 coupling. The competition between super-exchange interactions and the large, noncollinear anisotropies at metal sites results in a weakly magnetic non-Kramers doublet ground state. This explains the SMM behavior displayed by both derivatives in the AC susceptibility data, with slow magnetic relaxation in 1Br being observable even in zero static field.

9.
Nat Mater ; 19(5): 546-551, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32066930

RESUMEN

Magnetic materials interfaced with superconductors may reveal new physical phenomena with potential for quantum technologies. The use of molecules as magnetic components has already shown great promise, but the diversity of properties offered by the molecular realm remains largely unexplored. Here we investigate a submonolayer of tetrairon(III) propeller-shaped single molecule magnets deposited on a superconducting lead surface. This material combination reveals a strong influence of the superconductor on the spin dynamics of the single molecule magnet. It is shown that the superconducting transition to the condensate state switches the single molecule magnet from a blocked magnetization state to a resonant quantum tunnelling regime. Our results open perspectives to control single molecule magnetism via superconductors and to use single molecule magnets as local probes of the superconducting state.

10.
Inorg Chem ; 59(3): 1763-1777, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31967457

RESUMEN

Chromium(II)-based extended metal atom chains have been the focus of considerable discussion regarding their symmetric versus unsymmetric structure and magnetism. We have now investigated four complexes of this class, namely, [Cr3(dpa)4X2] and [Cr5(tpda)4X2] with X = Cl- and SCN- [Hdpa = dipyridin-2-yl-amine; H2tpda = N2,N6-di(pyridin-2-yl)pyridine-2,6-diamine]. By dc/ac magnetic techniques and EPR spectroscopy, we found that all these complexes have easy-axis anisotropies of comparable magnitude in their S = 2 ground state (|D| = 1.5-1.8 cm-1) and behave as single-molecule magnets at low T. Ligand-field and DFT/CASSCF calculations were used to explain the similar magnetic properties of tri- versus pentachromium(II) strings, in spite of their different geometrical preferences and electronic structure. For both X ligands, the ground structure is unsymmetric in the pentachromium(II) species (i.e., with an alternation of long and short Cr-Cr distances) but is symmetric in their shorter congeners. Analysis of the electronic structure using quasi-restricted molecular orbitals (QROs) showed that the four unpaired electrons in Cr5 species are largely localized in four 3d-like QROs centered on the terminal, "isolated" Cr2+ ion. In Cr3 complexes, they occupy four nonbonding combinations of 3d-like orbitals centered only on the two terminal metals. In both cases, then, QRO eigenvalues closely mirror the 3d-level pattern of the terminal ions, whose coordination environment remains quite similar irrespective of chain length. We conclude that the extent of unpaired-electron delocalization has little impact on the magnetic anisotropy of these wire-like molecular species.

11.
Inorg Chem ; 57(9): 5438-5448, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29668273

RESUMEN

The stringlike complex [Fe4(tpda)3Cl2] (2; H2tpda = N2, N6-bis(pyridin-2-yl)pyridine-2,6-diamine) was obtained as the first homometallic extended metal atom chain based on iron(II) and oligo-α-pyridylamido ligands. The synthesis was performed under strictly anaerobic and anhydrous conditions using dimesityliron, [Fe2(Mes)4] (1; HMes = mesitylene), as both an iron source and a deprotonating agent for H2tpda. The four lined-up iron(II) ions in the structure of 2 (Fe···Fe = 2.94-2.99 Å, Fe···Fe···Fe = 171.7-168.8°) are wrapped by three doubly deprotonated twisted ligands, and the chain is capped at its termini by two chloride ions. The spectroscopic and electronic properties of 2 were investigated in dichloromethane by UV-vis-NIR absorption spectroscopy, 1H NMR spectroscopy, and cyclic voltammetry. The electrochemical measurements showed four fully resolved, quasi-reversible one-electron-redox processes, implying that 2 can adopt five oxidation states in a potential window of only 0.8 V. Direct current (dc) magnetic measurements indicate dominant ferromagnetic coupling at room temperature, although the ground state is only weakly magnetic. On the basis of density functional theory and angular overlap model calculations, this magnetic behavior was explained as being due to two pairs of ferromagnetically coupled iron(II) ions ( J = -21 cm-1 using JS i·S j convention) weakly antiferromagnetically coupled with each other. Alternating-current susceptibility data in the presence of a 2 kOe dc field and at frequencies up to 1.5 kHz revealed the onset of slow magnetic relaxation below 2.8 K, with the estimated energy barrier Ueff/ kB = 10.1(1.3) K.

12.
Chemistry ; 24(35): 8857-8868, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29655240

RESUMEN

The homoleptic mononuclear compound [Co(bpp-COOMe)2 ](ClO4 )2  (1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)2 ](ClO4 )2  (2) afforded the derivative [Zn0.95 Co0.05 (bpp-COOMe)2 ](ClO4 )2  (3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.

13.
Nat Commun ; 9(1): 480, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396458

RESUMEN

The use of single molecule magnets (SMMs) as cornerstone elements in spintronics and quantum computing applications demands that magnetic bistability is retained when molecules are interfaced with solid conducting surfaces. Here, we employ synchrotron Mössbauer spectroscopy to investigate a monolayer of a tetrairon(III) (Fe4) SMM chemically grafted on a gold substrate. At low temperature and zero magnetic field, we observe the magnetic pattern of the Fe4 molecule, indicating slow spin fluctuations compared to the Mössbauer timescale. Significant structural deformations of the magnetic core, induced by the interaction with the substrate, as predicted by ab initio molecular dynamics, are also observed. However, the effects of the modifications occurring at the individual iron sites partially compensate each other, so that slow magnetic relaxation is retained on the surface. Interestingly, these deformations escaped detection by conventional synchrotron-based techniques, like X-ray magnetic circular dichroism, thus highlighting the power of synchrotron Mössbauer spectroscopy for the investigation of hybrid interfaces.

14.
Dalton Trans ; 47(2): 585-595, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29239437

RESUMEN

The structure of pentachromium(ii) extended metal atom chain [Cr5(tpda)4Cl2] (2), which behaves as a single molecule magnet at low temperature, was investigated by Density Functional Theory (DFT) calculations and spectroscopic studies without the constraints of a crystal lattice (H2tpda = N2,N6-bis(pyridin-2-yl)pyridine-2,6-diamine). DFT studies both in the gas phase and including CH2Cl2 solvent effects indicate that an unsymmetric structure (C4 point group), with pairs of formally quadruply-bonded metal ions and one terminal metal center, is slightly more stable (2.9 and 3.9 kcal mol-1) than a symmetric structure (D4 point group). Isotopically-labelled samples (2-d8 and 2-d16) have then been prepared to aid in molecular symmetry determination by combined 1H and 2H NMR studies in dichloromethane solution. The spectra are strongly suggestive of a symmetric (D4) framework, indicating fast shuttling between the two unsymmetric forms over the timescale of NMR experiments. Procedures for a high-yield Pd-free synthesis of H2tpda and for site-selective post-synthetic H/D exchange of aromatic H2tpda hydrogens are also reported.

15.
Nat Mater ; 16(5): 505-506, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28439117
16.
Dalton Trans ; 46(12): 4075-4085, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28272635

RESUMEN

The molecular structures and magnetic properties of homoleptic iron(ii) compounds [Fe(bpp-COOMe)2](ClO4)2 (1) and [Fe(bpp-triolH3)2](ClO4)2 (2) have been investigated to ascertain their spin crossover (SCO) behaviour. In these hexacoordinated complexes, the bpp (2,6-bis(pyrazol-1-yl)pyridine) ligands adopt a mer-mer coordination mode and carry COOMe or C(O)NHC(CH2OH)3para substituents, respectively, on the central pyridyl ring. In spite of the almost equal donor power of the ligands to the iron(ii) centre, the two compounds feature different spin state configurations at room temperature. Compound 1 displays a highly-distorted octahedral environment around the iron(ii) centre, which adopts a high spin (HS) state at all temperatures, even under an external applied pressure up to 1.0 GPa. By contrast, 2 is characterized by a more regular octahedral coordination around the metal ion and exhibits a low spin (LS) configuration at or below room temperature. However, it shows a thermally-induced SCO behaviour at T > 400 K, along with Light-Induced Excited Spin State Trapping (LIESST) at low temperature, with TLIESST = 38 K. Since DFT (U)M06/6-311+G(d) geometry optimizations in vacuo indicate that both complexes should adopt a HS state and a highly-distorted coordination geometry, the stabilization of a LS configuration in 2 is ultimately ascribed to the effect of intermolecular hydrogen bonds, which align the [Fe(bpp-triolH3)2]2+ cations in 1D chains and impart profound differences in the geometric arrangement of the ligands.

17.
ChemMedChem ; 12(4): 337-345, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28067470

RESUMEN

Some hybrid foldamers of various length, all containing the (4R,5S)-4-carboxy-5-methyloxazolidin-2-one (d-Oxd) moiety alternating with an l-amino acid (l-Val, l-Lys, or l-Ala), were prepared in order to study their preferred conformations and to evaluate their biological activity. Surprisingly, only the longer oligomers containing l-Ala fold into well-established helices, whereas all the other oligomers give partially unfolded turn structures. Nevertheless, they all show good biocompatibility, with no detrimental effects up to 64 µm. After equipping some selected foldamers with the fluorescent tag rhodamine B, a quantitative analysis was performed by dose- and time-response fluorescence-activated cell sorting (FACS) assays with human HeLa cells and primary blood lymphocytes, granulocytes, and monocytes. Among the cell types analyzed, the oligomers associated with monocytes and granulocytes with greatest efficacy, still visible after 24 h incubation. This effect is even more pronounced for foldamers that are able to form stable helices.


Asunto(s)
Materiales Biocompatibles/farmacología , Granulocitos/efectos de los fármacos , Monocitos/efectos de los fármacos , Peptoides/farmacología , Aminoácidos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dicroismo Circular , Cristalografía por Rayos X , Granulocitos/citología , Granulocitos/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Conformación Molecular , Monocitos/citología , Monocitos/metabolismo , Peptoides/síntesis química , Peptoides/química
18.
Arch Pharm Res ; 40(5): 537-549, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27615010

RESUMEN

Nucleoside analogues play an important role in antiviral, antibacterial and antineoplastic chemotherapy. Herein we report the synthesis, structural characterization and biological activity of some 4'-C -methyl- and -phenyl dioxolane-based nucleosides. In particular, α and ß anomers of all natural nucleosides were obtained and characterized by NMR, HR-MS and X-ray crystallography. The compounds were tested for antimicrobial activity against some representative human pathogenic fungi, bacteria and viruses. Antitumor activity was evaluated in a large variety of human cancer cell-lines. Although most of the compounds showed non-significant activity, 23α weakly inhibited HIV-1 multiplication. Moreover, 22α and 32α demonstrated a residual antineoplastic activity, interestingly linked to the unnatural α configuration. These results may provide structural insights for the design of active antiviral and antitumor agents.


Asunto(s)
Fármacos Anti-VIH/farmacología , Antineoplásicos/farmacología , Dioxolanos/farmacología , VIH-1/efectos de los fármacos , Nucleósidos de Purina/farmacología , Nucleósidos de Pirimidina/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Dioxolanos/síntesis química , Dioxolanos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Nucleósidos de Purina/síntesis química , Nucleósidos de Purina/química , Nucleósidos de Pirimidina/síntesis química , Nucleósidos de Pirimidina/química , Relación Estructura-Actividad
19.
Chemistry ; 22(38): 13705-14, 2016 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-27356278

RESUMEN

A 3D metal-organic framework (MOF) having single-molecule magnet (SMM) linkers was prepared in crystalline form by using a tetrairon(III) complex functionalised with two divergent pyridyl groups, namely [Fe4 (pPy)2 (dpm)6 ] (1; H3 pPy=2-(hydroxymethyl)-2-(pyridin-4-yl)propane-1,3-diol, Hdpm=dipivaloylmethane). Reaction of 1 with silver(I) perchlorate afforded {[Fe4 (pPy)2 (dpm)6 ]2 Ag}ClO4 (2), which crystallises in a cubic face-centred lattice and exhibits two interlocked diamondoid networks. In 2, the SMMs act as linear ditopic synthons, and silver(I) ions as tetrahedral nodes coordinated by four pyridyl nitrogen atoms. The magnetic properties of 1 (S=5 and D≈-0.4 cm(-1) in the ground spin state) are largely preserved in 2, which shows slow magnetic relaxation with an anisotropy barrier of Ueff /kB =11.46(10) K in zero field and 14.25(8) K in an applied field of 1 kOe. However, crystal symmetry triggers highly noncollinear magnetic anisotropy contributions oriented at 109.47° from each other along the threefold axes of AgN4 tetrahedra, a unique scenario fully confirmed by a single-crystal cantilever torque magnetometry investigation. Magnetisation curves down to 0.03 K demonstrated the occurrence of a wide hysteresis loop when the magnetic field was swept along one of the four Ag-N bonds. By symmetry, the crystalline compound can then be persistently magnetised parallel or antiparallel to the four main diagonals of the unit cell, although the crystals have no overall second-order anisotropy.

20.
Nat Mater ; 15(2): 164-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26641019

RESUMEN

Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA