Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Geroscience ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878153

RESUMEN

Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.

2.
Elife ; 122023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37338980

RESUMEN

Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans homeodomain-interacting protein kinase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 induction overlaps with key longevity transcription factors, which suggests that hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and γ-aminobutyric acid (GABA)ergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity, which requires mxl-2 (MLX), hlh-30 (TFEB), and daf-16 (FOXO). Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.


Proteins are essential for nearly every cellular process to sustain a healthy organism. A complex network of pathways and signalling molecules regulates the proteins so that they work correctly in a process known as proteostasis. As the body ages, this network can become damaged, which leads to the production of faulty proteins. Many proteins end up being misfolded ­ in other words, they are misshapen on the molecular level, which can be toxic for the cell. A build-up of such misfolded proteins is implicated in several neurological conditions, including Alzheimer's, Parkinson's and Huntington's disease. Cells have various ways to detect and respond to internal stressors, such as tissue or organ damage. For example, specific proteins in the nervous system can raise a 'central' alert when damage is detected, which then primes and coordinates the body's systems to respond in the peripheral cells and tissues. But exactly how this happens is still unclear. To find out more about the central coordination of stress responses, Lazaro-Pena et al. studied one such sensor protein, called HPK-1, in the roundworm C. elegans. They first overexpressed the protein in various tissues. This revealed that only when HPK-1 was overactive in nerve tissue, it protected proteins and prolonged the lifespan of the worms. An increased amount of HPK-1 improved the health span of the worms and older worms also moved better. However, genetically manipulated worms lacking HPK-1 in their nerve cells showed a faster decline in nervous system health as they aged, which could be reversed once HPK-1 was activated again. Lazaro-Pena et al. then measured the amount of HPK-1 in worms at different stages of their life. This showed that as the worms aged, the amount of HPK-1 increased in the nerve cells. The nerve cells in which HPK-1 levels increased overlapped with an increased expression of proteins associated with longevity. Moreover, when HPK-1 was overexpressed, it stimulated the release of other cell signals, which then triggered protective responses to prevent the misfolding and aggregation of proteins and to help degrade damaged proteins. This study shows for the first time that HPK-1 appears to play a protective role during normal ageing and that it may act as a key switch to stimulate other protective mechanisms. These findings may give rise to new insights into how the nervous system can coordinate many different stress responses, and ultimately delay ageing throughout the whole body.


Asunto(s)
Proteínas de Caenorhabditis elegans , Longevidad , Animales , Longevidad/genética , Caenorhabditis elegans/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Envejecimiento/genética , Homeostasis , Neuronas GABAérgicas/metabolismo
3.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-36711523

RESUMEN

Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 induction overlaps with key longevity transcription factors, which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity, which requires mxl-2 (MLX), hlh-30 (TFEB), and daf-16 (FOXO). Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.

4.
J Vis Exp ; (175)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34570095

RESUMEN

The ability to maintain proper function and folding of the proteome (protein homeostasis) declines during normal aging, facilitating the onset of a growing number of age-associated diseases. For instance, proteins with polyglutamine expansions are prone to aggregation, as exemplified with the huntingtin protein and concomitant onset of Huntington's disease. The age-associated deterioration of the proteome has been widely studied through the use of transgenic Caenorhabditis elegans expressing polyQ repeats fused to a yellow fluorescent protein (YFP). This polyQ::YFP transgenic animal model facilitates the direct quantification of the age-associated decline of the proteome through imaging the progressive formation of fluorescent foci (i.e., protein aggregates) and subsequent onset of locomotion defects that develop as a result of the collapse of the proteome. Further, the expression of the polyQ::YFP transgene can be driven by tissue-specific promoters, allowing the assessment of proteostasis across tissues in the context of an intact multicellular organism. This model is highly amenable to genetic analysis, thus providing an approach to quantify aging that is complementary to lifespan assays. We describe how to accurately measure polyQ::YFP foci formation within either neurons or body wall muscle during aging, and the subsequent onset of behavioral defects. Next, we highlight how these approaches can be adapted for higher throughput, and potential future applications using other emerging strategies for C. elegans genetic analysis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína Huntingtina , Longevidad , Proteoma , Proteostasis
5.
Methods Mol Biol ; 2144: 7-27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410021

RESUMEN

Lifespan is the most straightforward surrogate measure of aging, as it is easily quantifiable. A common approach to measure Caenorhabditis elegans lifespan is to follow a population of animals over time and score viability based on movement. We previously developed an alternative approach, called the Replica Set method, to quantitatively measure lifespan of C. elegans in a high-throughput manner. The replica set method allows a single investigator to screen more treatments or conditions in the same amount of time without loss of data quality. The method requires common equipment found in most laboratories working with C. elegans and is thus simple to adopt. Unlike traditional approaches, the Replica Set method centers on assaying independent samples of a population at each observation point, rather than a single sample over time as with "traditional" longitudinal methods. The protocols provided here describe both the traditional experimental approach and the Replica Set method, as well as practical considerations for each.


Asunto(s)
Envejecimiento/genética , Bioensayo/métodos , Caenorhabditis elegans/genética , Longevidad/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo
6.
J Vis Exp ; (136)2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-30010651

RESUMEN

The Replica Set method is an approach to quantitatively measure lifespan or survival of Caenorhabditis elegans nematodes in a high-throughput manner, thus allowing a single investigator to screen more treatments or conditions over the same amount of time without loss of data quality. The method requires common equipment found in most laboratories working with C. elegans and is thus simple to adopt. The approach centers on assaying independent samples of a population at each observation point, rather than a single sample over time as with traditional longitudinal methods. Scoring entails adding liquid to the wells of a multi-well plate, which stimulates C. elegans to move and facilitates quantifying changes in healthspan. Other major benefits of the Replica Set method include reduced exposure of agar surfaces to airborne contaminants (e.g. mold or fungus), minimal handling of animals, and robustness to sporadic mis-scoring (such as calling an animal as dead when it is still alive). To appropriately analyze and visualize the data from a Replica Set style experiment, a custom software tool was also developed. Current capabilities of the software include plotting of survival curves for both Replica Set and traditional (Kaplan-Meier) experiments, as well as statistical analysis for Replica Set. The protocols provided here describe the traditional experimental approach and the Replica Set method, as well as an overview of the corresponding data analysis.


Asunto(s)
Bioensayo/métodos , Caenorhabditis elegans/química , Envejecimiento , Animales , Estudios de Evaluación como Asunto , Análisis de Supervivencia
7.
PLoS Genet ; 13(10): e1007038, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29036198

RESUMEN

An extensive proteostatic network comprised of molecular chaperones and protein clearance mechanisms functions collectively to preserve the integrity and resiliency of the proteome. The efficacy of this network deteriorates during aging, coinciding with many clinical manifestations, including protein aggregation diseases of the nervous system. A decline in proteostasis can be delayed through the activation of cytoprotective transcriptional responses, which are sensitive to environmental stress and internal metabolic and physiological cues. The homeodomain-interacting protein kinase (hipk) family members are conserved transcriptional co-factors that have been implicated in both genotoxic and metabolic stress responses from yeast to mammals. We demonstrate that constitutive expression of the sole Caenorhabditis elegans Hipk homolog, hpk-1, is sufficient to delay aging, preserve proteostasis, and promote stress resistance, while loss of hpk-1 is deleterious to these phenotypes. We show that HPK-1 preserves proteostasis and extends longevity through distinct but complementary genetic pathways defined by the heat shock transcription factor (HSF-1), and the target of rapamycin complex 1 (TORC1). We demonstrate that HPK-1 antagonizes sumoylation of HSF-1, a post-translational modification associated with reduced transcriptional activity in mammals. We show that inhibition of sumoylation by RNAi enhances HSF-1-dependent transcriptional induction of chaperones in response to heat shock. We find that hpk-1 is required for HSF-1 to induce molecular chaperones after thermal stress and enhances hormetic extension of longevity. We also show that HPK-1 is required in conjunction with HSF-1 for maintenance of proteostasis in the absence of thermal stress, protecting against the formation of polyglutamine (Q35::YFP) protein aggregates and associated locomotory toxicity. These functions of HPK-1/HSF-1 undergo rapid down-regulation once animals reach reproductive maturity. We show that HPK-1 fortifies proteostasis and extends longevity by an additional independent mechanism: induction of autophagy. HPK-1 is necessary for induction of autophagosome formation and autophagy gene expression in response to dietary restriction (DR) or inactivation of TORC1. The autophagy-stimulating transcription factors pha-4/FoxA and mxl-2/Mlx, but not hlh-30/TFEB or the nuclear hormone receptor nhr-62, are necessary for extended longevity resulting from HPK-1 overexpression. HPK-1 expression is itself induced by transcriptional mechanisms after nutritional stress, and post-transcriptional mechanisms in response to thermal stress. Collectively our results position HPK-1 at a central regulatory node upstream of the greater proteostatic network, acting at the transcriptional level by promoting protein folding via chaperone expression, and protein turnover via expression of autophagy genes. HPK-1 therefore provides a promising intervention point for pharmacological agents targeting the protein homeostasis system as a means of preserving robust longevity.


Asunto(s)
Envejecimiento/genética , Proteínas de Caenorhabditis elegans/genética , Longevidad/genética , Complejos Multiproteicos/genética , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genética , Envejecimiento/patología , Animales , Autofagia/genética , Caenorhabditis elegans , Regulación de la Expresión Génica , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina , Chaperonas Moleculares/genética , Procesamiento Proteico-Postraduccional , Transducción de Señal/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA