Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38958809

RESUMEN

PURPOSE: Data on short courses of antibiotic therapy for Enterobacterales bacteremia in high-risk neutropenic patients are limited. The aim of the study was to describe and compare the frequency of bacteremia relapse, 30-day overall and infection-related mortality, Clostridiodes difficile infection and length of hospital stay since bacteremia among those who received antibiotic therapy for 7 or 14 days. METHODS: This is a multicenter, prospective, observational cohort study in adult high-risk neutropenic patients with hematologic malignancies or hematopoietic stem cell transplant and monomicrobial Enterobacterales bacteremia. They received appropriate empirical antibiotic therapy, had a clinical response within 7 days, and infection source control. Clinical, epidemiological and outcomes variables were compared based on 7 or 14 days of AT. RESULTS: Two hundred patients were included (100, 7-day antibiotic therapy; 100, 14-day antibiotic therapy). Escherichia coli was the pathogen most frequently isolated (47.5%), followed by Klebsiella sp. (40.5%). Among those patients that received 7-day vs. 14-day antibiotic course, a clinical source of bacteremia was found in 54% vs. 57% (p = 0.66), multidrug-resistant Enterobacterales isolates in 28% vs. 30% (p = 0.75), and 40% vs. 47% (p = 0.31) received combined empirical antibiotic therapy. Overall mortality was 3% vs. 1% (p = 0.62), in no case related to infection; bacteremia relapse was 7% vs. 2% (p = 0.17), and length of hospital stay since bacteremia had a median of 9 days (IQR: 7-15) vs. 14 days (IQR: 13-22) (p = < 0.001). CONCLUSIONS: These data suggest that seven-day antibiotic therapy might be adequate for patients with high-risk neutropenia and Enterobacterales bacteremia, who receive appropriate empirical therapy, with clinical response and infection source control.

2.
J Microbiol Methods ; 223: 106972, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38871227

RESUMEN

Recently, considerable uncertainty has arisen concerning the appropriate susceptibility testing for cefiderocol in gram-negative bacilli, particularly in the context of its application to Acinetobacter spp. The optimal method for assessing the susceptibility levels of Acinetobacter spp. to cefiderocol remains a subject of debate due to substantial disparities observed in the values obtained through various testing procedures. This study employed four minimum inhibitory concentration (MIC) methodologies and the disk diffusion to assess the susceptibility of twenty-seven carbapenem resistant (CR)-Acinetobacter strains to cefiderocol. The results from our study reveal significant variations in the minimum inhibitory concentration (MIC) values obtained with the different methods and in the level of agreement in interpretation categories between the different MIC methods and the disk diffusion test. Among the MIC methods, there was relatively more consistency in reporting the interpretation categories. For European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, the categorical agreement (CA) for MIC methods ranged between 66.7 and 81.5%. On the other hand, the essential agreement (EA) values were as low as 18.5-29.6%. The CA between MIC methods and disk diffusion was 81.5%. These results emphasize the need for a reliable, accurate, and clinically validated methodology to effectively assess the susceptibility of Acinetobacter spp. to cefiderocol. The wide variability observed in our study highlights the importance of standardizing the susceptibility testing process for cefiderocol to ensure consistent and reliable results for clinical decision-making.

3.
J Clin Microbiol ; : e0125523, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904386

RESUMEN

Prompt and precise identification of carbapenemase-producing organisms is crucial for guiding clinical antibiotic treatments and limiting transmission. Here, we propose modifying the Blue Carba test (BCT) and Carba NP-direct (CNPd) to identify molecular carbapenemase classes, including dual carbapenemase strains, by adding specific Class A and Class B inhibitors. We tested 171 carbapenemase-producing Gram-negative bacilli strains-21 in Class A (KPC, NMC, SME), 58 in Class B (IMP, VIM, NDM, SPM), and 92 with dual carbapenemase production (KPC+NDM, KPC+IMP, KPC+VIM), all previously positive with BCT or CNPd. We also included 13 carbapenemase non-producers. ß-lactamases were previously characterized by PCR. The improved BCT/CNPd methods detect imipenem hydrolysis from an imipenem-cilastatin solution, using pH indicators and Class A (avibactam) and/or Class B (EDTA) inhibitors. Results were interpreted visually based on color changes. CNPd achieved 99.4% sensitivity and 100% specificity in categorizing carbapenemases, while BCT had 91.8% sensitivity and 100% specificity. Performance varied by carbapenemase classes: both tests classified all Class A-producing strains. For Class B, the CNP test identified 57/58 strains (98.3%), whereas the BCT test, 45/58 strains (77.6%), with non-fermenters posing the greatest detection challenge. For Classes A plus B dual producers, both tests performed exceptionally well, with only one indeterminate strain for the BCT. The statistical comparison showed both methods had similar times to a positive result, with differences based on the carbapenemase class or bacterial group involved. This improved assay rapidly distinguishes major Class A or Class B carbapenemase producers among Gram-negative bacilli, including dual-class combinations, in less than 2 hours. IMPORTANCE: Rapid and accurate identification of carbapenemase-producing organisms is of vital importance in guiding appropriate clinical antibiotic treatments and curbing their transmission. The emergence of negative bacilli carrying multiple carbapenemase combinations during and after the severe acute respiratory syndrome coronavirus 2 pandemic has posed a challenge to the conventional biochemical tests typically used to determine the specific carbapenemase type in the isolated strains. Several initiatives have aimed to enhance colorimetric methods, enabling them to independently identify the presence of Class A or Class B carbapenemases. Notably, no previous efforts have been made to distinguish both classes simultaneously. Additionally, these modifications have struggled to differentiate between carriers of multiple carbapenemases, a common occurrence in many Latin American countries. In this study, we introduced specific Class A and Class B carbapenemase inhibitors into the Blue Carba test (BCT) and Carba NP-direct (CNP) colorimetric assays to identify the type of carbapenemase, even in cases of multiple carbapenemase producers within these classes. These updated assays demonstrated exceptional sensitivity and specificity (≥ 90%) all within a rapid turnaround time of under 2 hours, typically completed in just 45 minutes. These in-house enhancements to the BCT and CNP assays present a rapid, straightforward, and cost-effective approach to determining the primary carbapenemase classes. They could serve as a viable alternative to molecular biology or immuno-chromatography techniques, acting as an initial diagnostic step in the process.

4.
BMJ Open ; 14(6): e082156, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889938

RESUMEN

INTRODUCTION: Gaps in antimicrobial resistance (AMR) surveillance and control, including implementation of national action plans (NAPs), are evident internationally. Countries' capacity to translate political commitment into action is crucial to cope with AMR at the human-animal-environment interface. METHODS: We employed a two-stage process to understand opportunities and challenges related to AMR surveillance and control at the human-animal interface in Argentina. First, we compiled the central AMR policies locally and mapped vital stakeholders around the NAP and the national commission against bacterial resistance. Second, we conducted qualitative interviews using a semistructured questionnaire covering stakeholders' understanding and progress towards AMR and NAP. We employed a mixed deductive-inductive approach and used the constant comparative analysis method. We created categories and themes to cluster subthemes and determined crucial relationships among thematic groups. RESULTS: Crucial AMR policy developments have been made since 1969, including gradually banning colistin in food-producing animals. In 2023, a new government decree prioritised AMR following the 2015 NAP launch. Our qualitative analyses identified seven major themes for tackling AMR: (I) Cultural factors and sociopolitical country context hampering AMR progress, (II) Fragmented governance, (III) Antibiotic access and use, (IV) AMR knowledge and awareness throughout stakeholders, (V) AMR surveillance, (VI) NAP efforts and (VII) External drivers. We identified a fragmented structure of the food production chain, poor cross-coordination between stakeholders, limited surveillance and regulation among food-producing animals and geographical disparities over access, diagnosis and treatment. The country is moving to integrate animal and food production into its surveillance system, with most hospitals experienced in monitoring AMR through antimicrobial stewardship programmes. CONCLUSION: AMR accountability should involve underpinning collaboration at different NAP implementation levels and providing adequate resources to safeguard long-term sustainability. Incorporating a multisectoral context-specific approach relying on different One Health domains is crucial to strengthening local AMR surveillance.


Asunto(s)
Crianza de Animales Domésticos , Antibacterianos , Política de Salud , Argentina , Humanos , Animales , Antibacterianos/uso terapéutico , Investigación Cualitativa , Farmacorresistencia Bacteriana , Participación de los Interesados , Programas de Optimización del Uso de los Antimicrobianos/organización & administración , Encuestas y Cuestionarios
5.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702700

RESUMEN

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Asunto(s)
Antibacterianos , Enfermedades de los Gatos , Enfermedades de los Perros , Infecciones por Enterobacteriaceae , beta-Lactamasas , Animales , Gatos , Perros , Enfermedades de los Gatos/microbiología , Enfermedades de los Gatos/epidemiología , beta-Lactamasas/genética , Argentina/epidemiología , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Antibacterianos/farmacología , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/epidemiología , Pruebas de Sensibilidad Microbiana , Mascotas , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/genética , Enterobacteriaceae/enzimología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/enzimología
6.
Access Microbiol ; 6(2)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482368

RESUMEN

Background: Streptococcus pneumoniae, a prominent human pathogen linked to various systemic diseases, includes non-typeable pneumococci marked by the absence of a detectable capsule. However, the majority of invasive infections are attributed to encapsulated strains. This case report details the first documented instance of invasive disease caused by non-typeable S. pneumoniae in Argentina since 2017. Case Presentation: A 19-year-old woman presented with haemorrhagic injuries attributed to chronic oral mucosa irritation. Subsequent hospitalization revealed bone marrow aplasia, leading to antibiotic, antifungal, antiviral, and immunosuppressive treatments, culminating in her discharge. Two weeks later, she was readmitted with sepsis related to a respiratory focus, exhibiting a negative COVID-PCR test. After ten days, ICU admission revealed additional infections: positive COVID-PCR test, fungal sinusitis, and S. pneumoniae bacteremia. Targeted treatments led to improvement, and the patient was subsequently discharged. S pneumoniae characterization: Verification of the capsule's absence utilized traditional methods such as the Quellung reaction, transmission electron microscopy, molecular assays, and Whole Genome Sequencing (WGS). The isolate, identified as ST18335, displayed genetic features and antibiotic resistance patterns, concordant between WGS and the agar dilution method. It demonstrated non-susceptibility to penicillin and cefotaxime, based on meningitis breakpoints, as well as meropenem and cotrimoxazole. Conclusion: This case underscores the clinical significance of non-typeable S. pneumoniae, emphasizing the necessity for a comprehensive approach to identification and characterization. The findings contribute to ongoing discussions regarding the challenges posed by non-typeable strains in vaccine development, understanding clinical impacts, and addressing antibiotic resistance. As the pneumococcal epidemiological landscape evolves, this case serves as a valuable addition to the evolving knowledge surrounding non-typeable S. pneumoniae, highlighting the continued need for surveillance and research in infectious diseases.

7.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496545

RESUMEN

The emergence of Gram-negative bacteria resistant to multiple antibiotics, particularly carbapenem-resistant (CR) Acinetobacter strains, poses a significant threat globally. Despite efforts to develop new antimicrobial therapies, limited progress has been made, with only two drugs-cefiderocol and sulbactam-durlobactam-showing promise for CR-Acinetobacter infections. Cefiderocol, a siderophore cephalosporin, demonstrates promising efficacy in the treatment of Gram-negative infections. However, resistance to cefiderocol has been reported in A. baumannii. Combination therapies, such as cefiderocol with avibactam or sulbactam, show reduced MICs against cefiderocol-non-susceptible strains with in vivo efficacy, although the outcomes can be complex and species-specific. In the present work, the molecular characterization of spontaneous cefiderocol-resistant variants, a CRAB strain displaying antagonism with sulbactam and an A. lwoffii strain showing antagonism with avibactam, were studied. The results reveal intriguing insights into the underlying mechanisms, including mutations affecting efflux pumps, transcriptional regulators, and iron homeostasis genes. Moreover, gene expression analysis reveals significant alterations in outer membrane proteins, iron homeostasis, and ß-lactamases, suggesting adaptive responses to selective pressure. Understanding these mechanisms is crucial for optimizing treatment strategies and preventing adverse clinical outcomes. This study highlights the importance of preemptively assessing drug synergies to navigate the challenges posed by antimicrobial resistance in CR-Acinetobacter infections.

8.
Microbiol Spectr ; 12(3): e0411123, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38319084

RESUMEN

Ceftazidime-avibactam (CZA) therapy has significantly improved survival rates for patients infected by carbapenem-resistant bacteria, including KPC producers. However, resistance to CZA is a growing concern, attributed to multiple mechanisms. In this study, we characterized four clinical CZA-resistant Klebsiella pneumoniae isolates obtained between July 2019 and December 2020. These isolates expressed novel allelic variants of blaKPC-2 resulting from changes in hotspots of the mature protein, particularly in loops surrounding the active site of KPC. Notably, KPC-80 had an K269_D270insPNK mutation near the Lys270-loop, KPC-81 had a del_I173 mutation within the Ω-loop, KPC-96 showed a Y241N substitution within the Val240-loop and KPC-97 had an V277_I278insNSEAV mutation within the Lys270-loop. Three of the four isolates exhibited low-level resistance to imipenem (4 µg/mL), while all remained susceptible to meropenem. Avibactam and relebactam effectively restored carbapenem susceptibility in resistant isolates. Cloning mutant blaKPC genes into pMBLe increased imipenem MICs in recipient Escherichia coli TOP10 for blaKPC-80, blaKPC-96, and blaKPC-97 by two dilutions; again, these MICs were restored by avibactam and relebactam. Frameshift mutations disrupted ompK35 in three isolates. Additional resistance genes, including blaTEM-1, blaOXA-18 and blaOXA-1, were also identified. Interestingly, three isolates belonged to clonal complex 11 (ST258 and ST11) and one to ST629. This study highlights the emergence of CZA resistance including unique allelic variants of blaKPC-2 and impermeability. Comprehensive epidemiological surveillance and in-depth molecular studies are imperative for understanding and monitoring these complex resistance mechanisms, crucial for effective antimicrobial treatment strategies. IMPORTANCE: The emergence of ceftazidime-avibactam (CZA) resistance poses a significant threat to the efficacy of this life-saving therapy against carbapenem-resistant bacteria, particularly Klebsiella pneumoniae-producing KPC enzymes. This study investigates four clinical isolates exhibiting resistance to CZA, revealing novel allelic variants of the key resistance gene, blaKPC-2. The mutations identified in hotspots surrounding the active site of KPC, such as K269_D270insPNK, del_I173, Y241N and V277_I278insNSEAV, prove the adaptability of these pathogens. Intriguingly, low-level resistance to imipenem and disruptions in porin genes were observed, emphasizing the complexity of the resistance mechanisms. Interestingly, three of four isolates belonged to clonal complex 11. This research not only sheds light on the clinical significance of CZA resistance but also shows the urgency for comprehensive surveillance and molecular studies to inform effective antimicrobial treatment strategies in the face of evolving bacterial resistance.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Ceftazidima , Infecciones por Klebsiella , Humanos , Antibacterianos/farmacología , Klebsiella pneumoniae , Argentina , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Carbapenémicos , Pruebas de Sensibilidad Microbiana , Imipenem , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Combinación de Medicamentos
9.
PLoS One ; 19(2): e0294820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408071

RESUMEN

Mobile colistin resistance (mcr) genes were described recently in Gram-negative bacteria including carbapenem-resistant Enterobacterales. There are ten mcr genes described in different Gram-negative bacteria, however, Escherichia coli harboring mcr-1 gene is by far the most frequent combination. In Argentina, mcr-1 gene was characterized only on plasmids belonging to IncI2 group. The aim of this work was to get new insights of mcr-1-harboring plasmids from E. coli. Eight E. coli isolates from a larger collection of 192 clinical E. coli isolates carrying the mcr-1 gene were sequenced using next generation technologies. Three isolates belonged to ST131 high-risk clone, and five to single ST, ST38, ST46, ST226, ST224, and ST405. Eight diverse mcr-1-harboring plasmids were analyzed: IncI2 (1), IncX4 (3), IncHI2/2A (3) and a hybrid IncFIA/HI1A/HI1B (1) plasmid. Plasmids belonging to the IncI2 (n = 1) and IncX4 (n = 3) groups showed high similarity with previously described plasmids. Two IncHI2/HI2A plasmids, showed high identity between them, while the third, showed several differences including additional resistance genes like tet(A) and floR. One IncFIA/H1A/H1B hybrid plasmid was characterized, highly similar to pSRC27-H, a prototype plasmid lacking mcr genes. mcr-1.5 variant was found in four plasmids with three different Inc groups: IncI2, IncHI2/HI2A and the hybrid FIA/HI1A/HI1B plasmid. mcr-1.5 variant is almost exclusively described in our country and with a high frequency. In addition, six E. coli isolates carried three allelic variants codifying for CTX-M-type extended-spectrum-ß-lactamases: blaCTX-M-2 (3), blaCTX-M-65 (2), and blaCTX-M-14 (1). It is the first description of mcr-1 harboring plasmids different to IncI2 group in our country. These results represents new insights about mcr-1 harboring plasmids recovered from E. coli human samples from Argentina, showing different plasmid backbones and resistance gene combinations.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Humanos , Colistina/farmacología , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Plásmidos/genética , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética
10.
Heliyon ; 10(1): e22610, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163174

RESUMEN

Staphylococcus aureus-(SA) is widespread among healthcare-associated-(HA) and the community-associated-(CA) infections. However, the contributions of MRSA and MSSA to the SA overall burden remain unclear. In a nationally-representative-survey conducted in Argentina, 668 SA clinical isolates from 61 hospitals were examined in a prospective, cross-sectional, multicenter study in April 2015. The study aimed to analyze MRSA molecular epidemiology, estimate overall SA infection incidence (MSSA, MRSA, and genotypes) in community-onset (CO: HACO, Healthcare-Associated-CO and CACO, Community-Associated-CO) and healthcare-onset (HO: HAHO, Healthcare-associated-HO) infections, stratified by age groups. Additionally temporal evolution was estimated by comparing this study's (2015) incidence values with a previous study (2009) in the same region. Erythromycin-resistant-MSSA and all MRSA strains were genetically typed. The SA total-infections (TI) overall-incidence was 49.1/100,000 monthly-visits, 25.1 and 24.0 for MRSA and MSSA respectively (P = 0.5889), in April 2015. In adults with invasive-infections (INVI), MSSA was 15.7 and MRSA was 11.8 (P = 0.0288), 1.3-fold higher. HA SA infections, both MSSA and MRSA, surpassed CA infections by over threefold. During 2009-2015, there was a significant 23.4 % increase in the SA infections overall-incidence, mainly driven by MSSA, notably a 54.2 % increase in INVI among adults, while MRSA infection rates remained stable. The MSSA rise was accompanied by increased antimicrobial resistance, particularly to erythromycin, linked to MSSA-CC398-t1451-ermT + -IEC+-pvl- emergence. The SA-infections rise was primarily attributed to community-onset-infections (37.3 % and 62.4 % increase for TI and INVI, respectively), particularly HACO-MSSA and HACO-MRSA in adults, as well as CACO-MSSA. The main CA-MRSA-PFGE-typeN-ST30-SCCmecIVc-PVL+/- clone along with other clones (USA300-ST8-IV-LV-PVL+/-, PFGE-typeDD-ST97-IV- PVL-) added to rather than replaced CA-MRSA-PFGE-typeI-ST5-SCCmecIVa-PVL+/- clone in HA invasive-infections. They also displaced clone HA-MRSA-PFGE-typeA-ST5-SCCmecI, mainly in HAHO infections. The overall-burden of SA infections is rising in Argentina, driven primarily by community-onset MSSA, particularly in adults, linked to increased erythromycin-resistance and MSSA-CC398-t1451-ermT + -IEC+-pvl- emergence. Novel knowledge and transmission-control strategies are required for MSSA.

11.
J Glob Antimicrob Resist ; 35: 335-341, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37923130

RESUMEN

OBJECTIVES: The aim of this study was to characterize the first 14 optrA-carrying linezolid resistant E. faecalis clinical isolates recovered in seven Argentinian hospitals between 2016 and 2021. The epidemiology of optrA-carrying isolates and the optrA genetic context were determined. METHODS: The isolates were phenotypically and genotypically characterized. Susceptibility to 13 antimicrobial agents was performed; clonal relationship was assessed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Data provided by the whole-genome sequencing were used for identification of sequence types, antimicrobial resistance genes, optrA variants, phylogenetic tree, and mobile genetic elements responsible to the dissemination of these strains. RESULTS: All the optrA-carrying E. faecalis isolates were multidrug-resistant and harboured several antimicrobial resistance genes. They carried three optrA variants and belonged to different lineages; however, three of them belonged to the hyperepidemic CC16. Mobile genetic elements were detected in all the isolates. The analysis of the optrA flanking region suggests the plasmidic localization in most of the isolates. CONCLUSIONS: To the best of our knowledge, this is the first report of optrA-mediated linezolid resistance in Argentina. The emergence and dissemination of the optrA genes in clinical E. faecalis isolates are of concern and highlights the importance of initiating the antimicrobial surveillance of Enterococcus spp. under a One Health strategy.


Asunto(s)
Antiinfecciosos , Enterococcus faecalis , Linezolid/farmacología , Antibacterianos/farmacología , Tipificación de Secuencias Multilocus , Argentina , Filogenia , Farmacorresistencia Bacteriana/genética , Antiinfecciosos/farmacología
12.
Animals (Basel) ; 13(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37889703

RESUMEN

Since the mid-2000s, livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has been identified among pigs worldwide, CC398 being the most relevant LA-MRSA clone. In the present work, nasal swabs were taken from healthy pigs of different age categories (25 to 154 days) from 2019 to 2021 in four intensive farms located in three provinces of Argentina. The aim of the present study was to characterize the first LA-MRSA isolates that colonized healthy fattening pigs in Argentina in terms of their resistance phenotype and genotype and to know the circulating clones in the country. Antimicrobial susceptibility, presence of the mecA gene and PCR screening of CC398 were evaluated in all the isolates. They were resistant to cefoxitin, penicillin, tetracycline, chloramphenicol and ciprofloxacin but susceptible to nitrofurantoin, rifampicin, vancomycin and linezolid. Furthermore, 79% were resistant to clindamycin and lincomycin, 68% to erythromycin, 58% to gentamicin and 37% to trimethoprim/sulfamethoxazole. All the isolates were multidrug resistant. The clonal relation was assessed by SmaI-PFGE (pulsed-field gel electrophoresis) and a representative isolate of each PFGE type was whole genome sequenced by Illumina. MLST (multilocus sequence typing), resistance and virulence genes and SCCmec typing were performed on sequenced isolates. The isolates were differentiated in three clonal types by PFGE, and they belonged to sequence-type ST398 (58%) and ST9, CC1 (42%) by MLST. SCCmec typeV and several resistance genes detected showed complete correlation with resistance phenotypes. The present study revealed that LA-MRSA colonizing healthy pigs in Argentina belongs to CC398 and CC1, two MRSA lineages frequently associated to pigs in other countries.

13.
Microbiol Spectr ; : e0165123, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732774

RESUMEN

The first cases of bla NDM in Argentina were detected in three Providencia rettgeri (Pre) recovered from two hospitals in Buenos Aires city in 2013. The isolates were genetically related, but the plasmid profile was different. Here, we characterized the bla NDM-1-harboring plasmids of the first three cases detected in Argentina. Hybrid assembly obtained from short- and long-read sequencing rendered bla NDM-1 in Col3M plasmids of ca. 320 kb (p15268A_320) in isolate PreM15268, 210 kb (p15758B_210) in PreM15758, and 225 kb (p15973A_225) in PreM15973. In addition, PreM15758 harbored a 98-kb circular plasmid (p15758C_98) flanked by a putative recombination site (hin-TnAs2), with 100% nucleotide ID and coverage with p15628A_320. Analysis of PFGE/S1-nuclease gel, Southern hybridization with bla NDM-1 probe, hybrid assembly of short and long reads suggests that pM15758C_98 can integrate by homologous recombination. The three bla NDM-1-plasmids were non-conjugative in vitro. Moreover, tra genes were incomplete, and oriT was not found in the three bla NDM-1-plasmids. In two isolates, blaNDM-1 was embedded in a partially conserved structure flanked by two ISKox2. In addition, all plasmids harbored aph(3')-Ia, aph(3')-VI, and qnrD1 genes and aac(6´)Ib-cr, bla OXA-1, catB3, and arr3 as part of a class 1 integron. Also, p15268A_320 and p15973A_225 harbored bla PER-2. To the best of our knowledge, this is the first report of clinical P. rettgeri harboring blaNDM-1 in an atypical genetic environment and located in unusual chimeric Col3M plasmids. The study and continuous surveillance of these pathogens are crucial to tracking the evolution of these resistant plasmids and finding solutions to tackle their dissemination. IMPORTANCE Infections caused by carbapenem hydrolyzing enzymes like NDM (New Delhi metallo-beta-lactamase) represent a serious problem worldwide because they restrict available treatment options and increase morbidity and mortality, and treatment failure prolongs hospital stays. The first three cases of NDM in Argentina were caused by genetically related P. rettgeri recovered in two hospitals. In this work, we studied the genetic structure of the plasmids encoding bla NDM in those index cases and revealed the enormous plasticity of these genetic elements. In particular, we found a small plasmid that was also found inserted in the larger plasmids by homologous recombination as a co-integrate element. We also found that the bla NDM plasmids were not able to transfer or move to other hosts, suggesting their role as reservoir elements for the acquisition of resistance genes. It is necessary to unravel the dissemination strategies and the evolution of these resistant plasmids to find solutions to tackle their spread.

14.
Pathogens ; 12(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513808

RESUMEN

OBJECTIVE: We aimed to describe a colistin (COL)-resistant (R) Chromobacterium violaceum (Cvi) isolate from a septic patient in Argentina expressing a previously unknown gene, blaCVI-1. METHODS: In 2019, a 12 year old child was injured with a thorn in a lagoon. The child was hospitalized due to sepsis and multiple abscesses. Cvi was isolated from skin and soft tissue and tracheal aspirate. The patient was successfully treated with imipenem (IMI) plus amikacin. Antimicrobial susceptibility was assessed by disk diffusion, broth microdilution, and the E-test. Carbapenemase activity was assayed by double-disk synergy and microbiological tests. Resistance, virulence, and additional gene searches were performed by in silico analysis of sequences obtained by whole-genome sequencing (WGS). A maximum likelihood phylogenetic tree was built with public Cvi genomes. RESULTS: R was seen for IMI and COL. Expression of a metallo-ß-lactamase was confirmed. Genome analysis revealed blaCVI-1, a subclass B2 metallo-ß-lactamase with 62.66% ID with CphA from A. hydrophila (WP081086394). R to COL could be attributed to the arnC and arnT genes. Virulence factors required for invasion and toxicity were also found. No plasmids were detected. The phylogeny tree showed two main clades with geographical distinction, and the isolate studied here stands alone in a branch closely related to two clinical isolates from the USA. CONCLUSIONS: This is the second report of infection by Cvi in Argentina. This pathogen carried a new gene, blaCVI-1, a metallo-ß-lactamase that can be detected by routine methods. Prompt suspicion of C. violaceum infection is crucial to treating this rare pathogen rapidly and properly.

15.
Pathogens ; 12(3)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36986401

RESUMEN

BACKGROUND: The global spread of carbapenemase-producing Enterobacterales has become an epidemiological risk for healthcare systems by limiting available antimicrobial treatments. The COVID-19 pandemic worsened this scenario, prompting the emergence of extremely resistant microorganisms. METHODS: Between March 2020 and September 2021, the NRL confirmed 82 clinical Enterobacterales isolates harboring a combination of blaKPC and MBL genes. Molecular typing was analyzed by PFGE and MLST. Modified double-disk synergy (MDDS) tests were used for phenotypic studies. RESULTS: Isolates were submitted from 28 hospitals located in seven provinces and Buenos Aires City, including 77 K. pneumoniae, 2 K. oxytoca, 2 C. freundii, and 1 E. coli. Almost half of K. pneumoniae isolates (n = 38; 49.4%), detected in 15 hospitals, belong to the CC307 clone. CC11 was the second clone, including 29 (37.7%) isolates (22, ST11 and 7, ST258) from five cities and 12 hospitals. Three isolates belonging to CC45 were also detected. The carbapenemase combinations observed were as follows: 55% blaKPC-2 plus blaNDM-5; 32.5% blaKPC-2 plus blaNDM-1; 5% blaKPC-3 plus blaNDM-1; 5% blaKPC-2 plus blaIMP-8; and 2.5% strain with blaKPC-2 plus blaNDM-5 plus blaOXA-163. Aztreonam/avibactam and aztreonam/relebactam were the most active combinations (100% and 91% susceptible, respectively), followed by fosfomycin (89%) and tigecycline (84%). CONCLUSIONS: The MDDS tests using ceftazidime-avibactam/EDTA and aztreonam/boronic acid disks improved phenotypic classification as dual producers. The successful high-risk clones of K. pneumoniae, such as hyper-epidemic CC307 and CC11 clones, drove the dissemination of double carbapenemase-producing isolates during the COVID-19 pandemic.

16.
Biology (Basel) ; 12(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36979049

RESUMEN

BACKGROUND: After the emergence of COVID-19, numerous cases of A. baumannii/SARS-CoV-2 co-infection were reported. Whether the co-infecting A. baumannii strains have distinctive characteristics remains unknown. METHODS AND RESULTS: A. baumannii AMA_NO was isolated in 2021 from a patient with COVID-19. AMA166 was isolated from a mini-BAL used on a patient with pneumonia in 2016. Both genomes were similar, but they possessed 337 (AMA_NO) and 93 (AMA166) unique genes that were associated with biofilm formation, flagellar assembly, antibiotic resistance, secretion systems, and other functions. The antibiotic resistance genes were found within mobile genetic elements. While both strains harbored the carbapenemase-coding gene blaOXA-23, only the strain AMA_NO carried blaNDM-1. Representative functions coded for by virulence genes are the synthesis of the outer core of lipooligosaccharide (OCL5), biosynthesis and export of the capsular polysaccharide (KL2 cluster), high-efficiency iron uptake systems (acinetobactin and baumannoferrin), adherence, and quorum sensing. A comparative phylogenetic analysis including 239 additional sequence type (ST) 2 representative genomes showed high similarity to A. baumannii ABBL141. Since the degree of similarity that was observed between A. baumannii AMA_NO and AMA166 is higher than that found among other ST2 strains, we propose that they derive from a unique background based on core-genome phylogeny and comparative genome analysis. CONCLUSIONS: Acquisition or shedding of specific genes could increase the ability of A. baumannii to infect patients with COVID-19.

17.
Rev. argent. microbiol ; 55(1): 101-110, mar. 2023.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1441190

RESUMEN

Abstract Escherichia coli is one of the main human pathogens causing different hospital- and community-acquired infections. During the period from January 2013 to March 2015, 1.96% (32/1632) of E. coli isolates recovered at the Hospital Regional de Ushuaia, Tierra del Fuego province, were resistant to third-generation cephalosporins (TGCs). These isolates were resistant to cefotaxime (91%) and/or ceftazidime (28%). No resistance to carbapenems was detected. Twenty-six isolates were positive for blaCTX-M gene, grouped as CTX-M-1/15 (54%); CTX-M-9/14 (25%); CTX-M-2 (17%); and CTX-M-1/15 plus CTX-M-9/14 (4%). Five TGC-resistant strains were positive for blaCMY gene, while one strain harbored TEM-19 ESBL. Twelve isolates were identified as ST131 E. coli hyperepidemic clone, and one as ST69. Genome sequence analysis of seven blaCTX-M-15 E. coli selected isolates confirm the circulation of ST131, ST617 and ST405 international high-risk clones in the city of Ushuaia.


Resumen Escherichia coli es uno de los principales patógenos humanos causantes de diferentes infecciones de inicio hospitalario y comunitario. Se determinó que el 1,96% (32/1.632) de los aislamientos de E. coli recuperados entre enero de 2013 y marzo de 2015 en el Hospital Regional de Ushuaia, provincia de Tierra del Fuego, fueron resistentes a cefalosporinas de tercera generación (CTG). Estos aislamientos fueron resistentes a cefotaxima (91%) y/o a ceftazidima (28%). No se detectó resistencia a los carbapenemes. Veintiséis aislamientos fueron positivos para el gen blaCTX-M, agrupados como CTX-M-1/15 (54%), CTX-M-9/14 (25%), CTX-M-2 (17%) y CTX-M-1/15 más CTX-M-9/14 (4%). Cinco cepas resistentes a CTG dieron positivo para el gen blaCMY, mientras que un aislamiento presentó la BLEE TEM-19. Doce aislamientos se identificaron como clon hiperepidémico E. coli ST131 y uno como ST69. El análisis de las secuencias del genoma de siete aislamientos seleccionados de E. coli blaCTX-M-15 confirmó la circulación de los clones internacionales de alto riesgo ST131, ST617 y ST405 en la ciudad de Ushuaia.

18.
Antibiotics (Basel) ; 12(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36830136

RESUMEN

Identifying the risk factors for carbapenem-resistant Enterobacterales (CRE) bacteremia in cancer and hematopoietic stem cell transplantation (HSCT) patients would allow earlier initiation of an appropriate empirical antibiotic treatment. This is a prospective multicenter observational study in patients from 12 centers in Argentina, who presented with cancer or hematopoietic stem-cell transplant and developed Enterobacterales bacteremia. A multiple logistic regression model identified risk factors for CRE bacteremia, and a score was developed according to the regression coefficient. This was validated by the bootstrap resampling technique. Four hundred and forty-three patients with Enterobacterales bacteremia were included: 59 with CRE and 384 with carbapenem-susceptible Enterobacterales (CSE). The risk factors that were identified and the points assigned to each of them were: ≥10 days of hospitalization until bacteremia: OR 4.03, 95% CI 1.88-8.66 (2 points); previous antibiotics > 7 days: OR 4.65, 95% CI 2.29-9.46 (2 points); current colonization with KPC-carbapenemase-producing Enterobacterales: 33.08, 95% CI 11.74-93.25 (5 points). With a cut-off of 7 points, a sensitivity of 35.59%, specificity of 98.43%, PPV of 77.7%, and NPV of 90.9% were obtained. The overall performance of the score was satisfactory (AUROC of 0.85, 95% CI 0.80-0.91). Finally, the post-test probability of CRE occurrence in patients with none of the risk factors was 1.9%, which would virtually rule out the presence of CRE bacteremia.

20.
Rev Argent Microbiol ; 55(1): 43-48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36154980

RESUMEN

Escherichia coli is one of the main human pathogens causing different hospital- and community-acquired infections. During the period from January 2013 to March 2015, 1.96% (32/1632) of E. coli isolates recovered at the Hospital Regional de Ushuaia, Tierra del Fuego province, were resistant to third-generation cephalosporins (TGCs). These isolates were resistant to cefotaxime (91%) and/or ceftazidime (28%). No resistance to carbapenems was detected. Twenty-six isolates were positive for blaCTX-M gene, grouped as CTX-M-1/15 (54%); CTX-M-9/14 (25%); CTX-M-2 (17%); and CTX-M-1/15 plus CTX-M-9/14 (4%). Five TGC-resistant strains were positive for blaCMY gene, while one strain harbored TEM-19 ESBL. Twelve isolates were identified as ST131 E. coli hyperepidemic clone, and one as ST69. Genome sequence analysis of seven blaCTX-M-15E. coli selected isolates confirm the circulation of ST131, ST617 and ST405 international high-risk clones in the city of Ushuaia.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/genética , Argentina/epidemiología , beta-Lactamasas/genética , Infecciones por Escherichia coli/epidemiología , Cefotaxima , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA