Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Eye Res ; 226: 109338, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470430

RESUMEN

Corneal wound healing is integral for resolution of corneal disease or for post-operative healing. However, corneal scarring that may occur secondary to this process can significantly impair vision. Tissue transglutaminase 2 (TGM2) inhibition has shown promising antifibrotic effects and thus holds promise to prevent or treat corneal scarring. The commercially available ocular solution for treatment of ocular manifestations of Cystinosis, Cystaran®, contains the TGM2 inhibitor cysteamine hydrochloride (CH). The purpose of this study is to assess the safety of CH on corneal epithelial and stromal wounds, its effects on corneal wound healing, and its efficacy against corneal scarring following wounding. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were first used to quantify and localize TGM2 expression in the cornea. Subsequently, (i) the in vitro effects of CH at 0.163, 1.63, and 16.3 mM on corneal epithelial cell migration was assessed with an epithelial cell migration assay, and (ii) the in vivo effects of application of 1.63 mM CH on epithelial and stromal wounds was assessed in a rabbit model with ophthalmic examinations, inflammation scoring, color and fluorescein imaging, optical coherence tomography (OCT), and confocal biomicroscopy. Post-mortem assessment of corneal tissue post-stromal wounding included biomechanical characterization (atomic force microscopy (AFM)), histology (H&E staining), and determining incidence of myofibroblasts (immunostaining against α-SMA) in wounded corneal tissue. TGM2 expression was highest in corneal epithelial cells. Application of the TGM2 inhibitor CH did not affect in vitro epithelial cell migration at the two lower concentrations tested. At 16.3 mM, decreased cell migration was observed. In vivo application of CH at 57 mM was well tolerated and did not adversely affect wound healing. No difference in corneal scarring was found between CH treated and vehicle control eyes. This study shows that the TGM2 inhibitor CH, at the FDA-approved dose, is well tolerated in a rabbit model of corneal wound healing and does not adversely affect epithelial or stromal wound healing. This supports the safe use of this medication in Cystinosis patients with open corneal wounds. CH did not have an effect on corneal scarring in this study, suggesting that Cystaran® administration to patients with corneal wounds is unlikely to decrease corneal fibrosis.


Asunto(s)
Lesiones de la Cornea , Cisteamina , Cistinosis , Epitelio Corneal , Animales , Conejos , Cicatriz/metabolismo , Córnea/efectos de los fármacos , Córnea/metabolismo , Enfermedades de la Córnea/patología , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/metabolismo , Cisteamina/farmacología , Cisteamina/uso terapéutico , Cisteamina/metabolismo , Cistinosis/metabolismo , Cistinosis/patología , Epitelio Corneal/patología , Proteína Glutamina Gamma Glutamiltransferasa 2/antagonistas & inhibidores , Cicatrización de Heridas/efectos de los fármacos
2.
mBio ; 10(6)2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822587

RESUMEN

Metal-reducing bacteria in the genus Geobacter use a complex protein apparatus to guide the self-assembly of a divergent type IVa pilin peptide and synthesize conductive pilus appendages that show promise for the sustainable manufacturing of protein nanowires. The preferential helical conformation of the Geobacter pilin, its high hydrophobicity, and precise distribution of charged and aromatic amino acids are critical for biological self-assembly and conductivity. We applied this knowledge to synthesize via recombinant methods truncated pilin peptides for the bottom-up fabrication of protein nanowires and identified rate-limiting steps of pilin nucleation and fiber elongation that control assembly efficiency and nanowire length, respectively. The synthetic fibers retained the biochemical and electronic properties of the native pili even under chemical fixation, a critical consideration for integration of the nanowires into electronic devices. The implications of these results for the design and mass production of customized protein nanowires for diverse applications are discussed.IMPORTANCE The discovery in 2005 of conductive protein appendages (pili) in the metal-reducing bacterium Geobacter sulfurreducens challenged our understanding of biological electron transfer and pioneered studies in electromicrobiology that revealed the electronic basis of many microbial metabolisms and interactions. The protein nature of the pili afforded opportunities for engineering novel conductive peptides for the synthesis of nanowires via cost-effective and scalable manufacturing approaches. However, methods did not exist for efficient production, purification, and in vitro assembly of pilins into nanowires. Here we describe platforms for high-yield recombinant synthesis of Geobacter pilin derivatives and their assembly as protein nanowires with biochemical and electronic properties rivaling those of the native pili. The bottom-up fabrication of protein nanowires exclusively from pilin building blocks confirms unequivocally the charge transport capacity of the peptide assembly and establishes the intellectual foundation needed to manufacture pilin-based nanowires in bioelectronics and other applications.


Asunto(s)
Proteínas Fimbrias/metabolismo , Geobacter/metabolismo , Péptidos/metabolismo , Aminoácidos Aromáticos/metabolismo , Conductividad Eléctrica , Transporte de Electrón/fisiología , Fimbrias Bacterianas/metabolismo , Nanocables
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA