Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32753407

RESUMEN

OBJECTIVE: To identify candidate biomarkers associated with neuromyelitis optica spectrum disorder (NMOSD) using high-throughput technologies that broadly assay the concentrations of serum analytes and frequencies of immune cell subsets. METHODS: Sera, peripheral blood mononuclear cells (PBMCs), and matched clinical data from participants with NMOSD and healthy controls (HCs) were obtained from the Collaborative International Research in Clinical and Longitudinal Experience Study NMOSD biorepository. Flow cytometry panels were used to measure the frequencies of 39 T-cell, B-cell, regulatory T-cell, monocyte, natural killer (NK) cell, and dendritic cell subsets in unstimulated PBMCs. In parallel, multiplex proteomics assays were used to measure 46 serum cytokines and chemokines in 2 independent NMOSD and HC cohorts. Multivariable regression models were used to assess molecular and cellular profiles in NMOSD compared with HC. RESULTS: NMOSD samples had a lower frequency of CD16+CD56+ NK cells. Both serum cohorts and multivariable logistic regression revealed increased levels of B-cell activating factor associated with NMOSD. Interleukin 6, CCL22, and CCL3 were also elevated in 1 NMOSD cohort of the 2 analyzed. Multivariable linear regression of serum analyte levels revealed a correlation between CX3CL1 (fractalkine) levels and the number of days since most recent disease relapse. CONCLUSIONS: Integrative analyses of cytokines, chemokines, and immune cells in participants with NMOSD and HCs provide congruence with previously identified biomarkers of NMOSD and highlight CD16+CD56+ NK cells and CX3CL1 as potential novel biomarker candidates.


Asunto(s)
Citocinas/sangre , Células Asesinas Naturales , Neuromielitis Óptica/sangre , Neuromielitis Óptica/diagnóstico , Adulto , Biomarcadores/sangre , Antígeno CD56 , Quimiocina CX3CL1/sangre , Estudios de Cohortes , Femenino , Proteínas Ligadas a GPI , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proteómica , Receptores de IgG
2.
Brain ; 142(6): 1598-1615, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31056665

RESUMEN

Neuromyelitis optica spectrum disorders (NMOSD) constitute rare autoimmune disorders of the CNS that are primarily characterized by severe inflammation of the spinal cord and optic nerve. Approximately 75% of NMOSD patients harbour circulating pathogenic autoantibodies targeting the aquaporin-4 water channel (AQP4). The source of these autoantibodies remains unclear, but parallels between NMOSD and other autoantibody-mediated diseases posit compromised B cell tolerance checkpoints as common underlying and contributing factors. Using a well established assay, we assessed tolerance fidelity by creating recombinant antibodies from B cell populations directly downstream of each checkpoint and testing them for polyreactivity and autoreactivity. We examined a total of 863 recombinant antibodies. Those derived from three anti-AQP4-IgG seropositive NMOSD patients (n = 130) were compared to 733 antibodies from 15 healthy donors. We found significantly higher frequencies of poly- and autoreactive new emigrant/transitional and mature naïve B cells in NMOSD patients compared to healthy donors (P-values < 0.003), thereby identifying defects in both central and peripheral B cell tolerance checkpoints in these patients. We next explored whether pathogenic NMOSD anti-AQP4 autoantibodies can originate from the pool of poly- and autoreactive clones that populate the naïve B cell compartment of NMOSD patients. Six human anti-AQP4 autoantibodies that acquired somatic mutations were reverted back to their unmutated germline precursors, which were tested for both binding to AQP4 and poly- or autoreactivity. While the affinity of mature autoantibodies against AQP4 ranged from modest to strong (Kd 15.2-559 nM), none of the germline revertants displayed any detectable binding to AQP4, revealing that somatic hypermutation is required for the generation of anti-AQP4 autoantibodies. However, two (33.3%) germline autoantibody revertants were polyreactive and four (66.7%) were autoreactive, suggesting that pathogenic anti-AQP4 autoantibodies can originate from the pool of autoreactive naïve B cells, which develops as a consequence of impaired early B cell tolerance checkpoints in NMOSD patients.


Asunto(s)
Acuaporina 4/genética , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Neuromielitis Óptica/genética , Adulto , Acuaporina 4/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuromielitis Óptica/metabolismo , Nervio Óptico/inmunología
3.
Ann Clin Transl Neurol ; 3(6): 443-54, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27547772

RESUMEN

OBJECTIVE: Myasthenia gravis (MG) is an autoimmune condition in which neurotransmission is impaired by binding of autoantibodies to acetylcholine receptors (AChR) or, in a minority of patients, to muscle specific kinase (MuSK). There are differences in the dominant IgG subclass, pathogenic mechanisms, and treatment responses between the two MG subtypes (AChR or MuSK). The antibodies are thought to be T-cell dependent, but the mechanisms underlying their production are not well understood. One aspect not previously described is whether defects in central and peripheral tolerance checkpoints, which allow autoreactive B cells to accumulate in the naive repertoire, are found in both or either form of MG. METHODS: An established set of assays that measure the frequency of both polyreactive and autoreactive B cell receptors (BCR) in naive populations was applied to specimens collected from patients with either AChR or MuSK MG and healthy controls. Radioimmuno- and cell-based assays were used to measure BCR binding to AChR and MuSK. RESULTS: The frequency of polyreactive and autoreactive BCRs (n = 262) was higher in both AChR and MuSK MG patients than in healthy controls. None of the MG-derived BCRs bound AChR or MuSK. INTERPRETATION: The results indicate that both these MG subtypes harbor defects in central and peripheral B cell tolerance checkpoints. Defective B cell tolerance may represent a fundamental contributor to autoimmunity in MG and is of particular importance when considering the durability of myasthenia gravis treatment strategies, particularly biologics that eliminate B cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA