Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 30(7): e202302931, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37986265

RESUMEN

Hierarchical zeolites can offer substantial benefits over bulk zeolites in catalysis. A drawback towards practical implementation is their lengthy synthesis, often requiring complex organic templates. This work describes an accelerated synthesis of nanolayered MWW zeolite based on the combination of interzeolite transformation (IZT) with a dual-templating strategy. FAU zeolite, hexamethyleneimine (HMI), and cetyltrimethylammonium bromide (CTAB) were respectively employed as Al source and primary zeolite, structure directing agent, and exfoliating agent. This approach allowed to reduce the synthesis of nanolayered MWW to 48 h, which is a considerable advance over the state of the art. Tracking structural, textural, morphological, and chemical properties during crystallization showed that 4-membered-ring (4MR) units derived from the FAU precursor are involved in the faster formation of MWW in comparison to a synthesis procedure from amorphous precursor. CTAB restricts the growth of the zeolite in the c-direction, resulting in nanolayered MWW. Moreover, we show that this approach can speed up the synthesis of nanolayered FER. The merits of nanolayered MWW zeolites are demonstrated in terms of improved catalytic performance in the Diels-Alder cycloaddition of 2,5-dimethylfuran and ethylene to p-xylene compared to bulk reference MWW sample.

2.
Catal Sci Technol ; 13(24): 6959-6967, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38089938

RESUMEN

A variety of methods are employed to synthesize amorphous silica-alumina (ASA) to resolve the role of Al speciation and surface area in the catalytic performance in the Diels-Alder cycloaddition reaction of 2,5-dimethylfuran and ethylene to p-xylene. ASA was prepared by homogeneous deposition-precipitation (HDP) of Al3+ on ordered mesoporous silica, i.e., SBA-15 and OMS prepared under hydrothermal synthesis conditions using an imidazole-based template, and one-step flame spray pyrolysis (FSP). IR spectroscopy and 27Al MAS NMR showed that the resulting ASA represented a set of materials with distinct textural and acidic properties. ASA prepared by grafting Al to ordered mesoporous silica led to a much higher concentration of Brønsted acid sites (BAS). These samples performed much better in the DAC reaction, with p-xylene yields higher than those obtained with a HBeta zeolite benchmark. Materials with Al partially in the bulk of silica (OMS, FSP) and containing significant alumina domains are less acidic and exhibit much lower p-xylene yields. These findings point to the importance of Brønsted acidity for p-xylene formation. This study shows that careful design of the Al speciation can lead to amorphous silica-alumina with similar DAC performance to microporous zeolites.

3.
Chemistry ; 28(5): e202103894, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34822193

RESUMEN

Methane dehydroaromatization is a promising reaction for the direct conversion of methane to liquid hydrocarbons. The active sites and the mechanism of this reaction remain controversial. This work is focused on the operando X-ray absorption near edge structure spectroscopy analysis of conventional Mo/ZSM-5 catalysts during their whole lifetime. Complemented by other characterization techniques, we derived spectroscopic descriptors of molybdenum precursor decomposition and its exchange with zeolite Brønsted acid sites. We found that the reduction of Mo-species proceeds in two steps and the active sites are of similar nature, regardless of the Mo content. Furthermore, the ZSM-5 unit cell contracts at the beginning of the reaction, which coincides with benzene formation and it is likely related to the formation of hydrocarbon pool intermediates. Finally, although reductive regeneration of used catalysts via methanation is less effective as compared to combustion of coke, it does not affect the structure of the catalysts.

4.
ACS Catal ; 8(9): 8459-8467, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30271670

RESUMEN

Surface carbon (coke, carbonaceous deposits) is an integral aspect of methane dehydroaromatization catalyzed by Mo/zeolites. We investigated the evolution of surface carbon species from the beginning of the induction period until the complete catalyst deactivation by the pulse reaction technique, TGA, 13C NMR, TEM, and XPS. Isotope labeling was performed to confirm the catalytic role of confined carbon species during MDA. It was found that "hard" and "soft" coke distinction is mainly related to the location of coke species inside the pores and on the external surface, respectively. In addition, MoO3 species act as an active oxidation catalyst, reducing the combustion temperature of a certain fraction of coke. Furthermore, after dissolving the zeolite framework by HF, we found that coke formed during the MDA reaction inside the zeolite pores is essentially a zeolite-templated carbon material. The possibility of preparing zeolite-templated carbons from the most available hydrocarbon feedstock is important for the development of these interesting materials.

5.
ACS Omega ; 3(11): 15293-15301, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458190

RESUMEN

The synthesis of hydroxenin monoacetate, a key intermediate in the manufacture of vitamin A, relies on the undesirable use of stoichiometric amounts of organic bases such as pyridine. Although the final product (vitamin A acetate) can be produced from hydroxenin diacetate, using the monoacetylated intermediate improves the overall process yield. Aiming to identify more efficient, environmentally benign alternatives, this work first studies the homogeneous acetylation reaction using pyridine. The addition of the base is found to enhance the rate of hydroxenin monoacetate formation, confirming its catalytic role, but also yields non-negligible amounts of hydroxenin diacetate. On the basis of these insights, Mg- and Al-containing hydrotalcites are explored because of their broad scope as base catalysts and the ability to finely tune their properties. The reaction kinetics are greatly enhanced via controlled thermal activation, forming high surface area mixed metal oxides displaying Lewis basic sites. In contrast, a Brønsted basic material synthesized by the reconstruction of a mixed oxide performs similarly to the as-synthesized hydrotalcite. Variation of the Mg/Al ratio from 1 to 3 has no significant impact, but activity losses are observed at higher values because of a reduced number of basic sites. After optimizing the reaction conditions, hydroxenin monoacetate yields >60% are obtained in five consecutive cycles without the need for any intermediate treatment. The findings confirm the potential of hydrotalcite-derived materials as highly selective catalysts for the production of vitamins with reduced levels of organic waste.

6.
Angew Chem Int Ed Engl ; 57(4): 1016-1020, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29181863

RESUMEN

Non-oxidative dehydroaromatization of methane (MDA) is a promising catalytic process for direct valorization of natural gas to liquid hydrocarbons. The application of this reaction in practical technology is hindered by a lack of understanding about the mechanism and nature of the active sites in benchmark zeolite-based Mo/ZSM-5 catalysts, which precludes the solution of problems such as rapid catalyst deactivation. By applying spectroscopy and microscopy, it is shown that the active centers in Mo/ZSM-5 are partially reduced single-atom Mo sites stabilized by the zeolite framework. By combining a pulse reaction technique with isotope labeling of methane, MDA is shown to be governed by a hydrocarbon pool mechanism in which benzene is derived from secondary reactions of confined polyaromatic carbon species with the initial products of methane activation.

7.
Angew Chem Int Ed Engl ; 55(48): 15086-15090, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27791321

RESUMEN

Non-oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation of coke during methane dehydroaromatization at 700 °C. Periodic pulsing of oxygen into the methane feed results in substantially higher cumulative product yield with synthesis gas; a H2 /CO ratio close to two is the main side-product of coke combustion. Using 13 C isotope labeling of methane it is demonstrated that oxygen predominantly reacts with molybdenum carbide species. The resulting molybdenum oxides catalyze coke oxidation. Less than one-fifth of the available oxygen reacts with gaseous methane. Combined with periodic regeneration at 550 °C, this strategy is a significant step forward, towards a process for converting methane into liquid hydrocarbons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA