Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429495

RESUMEN

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Asunto(s)
Enfermedades Musculares , Pez Cebra , Animales , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mutación , Pez Cebra/genética
2.
Neuromuscul Disord ; 33(2): 199-207, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36689846

RESUMEN

Myostatin is a myokine which acts upon skeletal muscle to inhibit growth and regeneration. Myostatin is endogenously antagonised by follistatin. This study assessed serum myostatin and follistatin concentrations as monitoring or prognostic biomarkers in dysferlinopathy, an autosomal recessively inherited muscular dystrophy. Myostatin was quantified twice with a three-year interval in 76 patients with dysferlinopathy and 38 controls. Follistatin was quantified in 62 of these patients at the same timepoints, and in 31 controls. Correlations with motor function, muscle fat fraction and contractile cross-sectional area were performed. A regression model was used to account for confounding variables. Baseline myostatin, but not follistatin, correlated with baseline function and MRI measures. However, in individual patients, three-year change in myostatin did not correlate with functional or MRI changes. Linear modelling demonstrated that function, serum creatine kinase and C-reactive protein, but not age, were independently related to myostatin concentration. Baseline myostatin concentration predicted loss of ambulation but not rate of change of functional or MRI measures, even when relative inhibition with follistatin was considered. With adjustment for extra-muscular causes of variation, myostatin could form a surrogate measure of functional ability or muscle mass, however myostatin inhibition does not form a promising treatment target in dysferlinopathy.


Asunto(s)
Distrofia Muscular de Cinturas , Miostatina , Humanos , Pronóstico , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/metabolismo , Músculo Esquelético/metabolismo , Biomarcadores/metabolismo
3.
Skelet Muscle ; 12(1): 25, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36447272

RESUMEN

Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Duchenne MD (DMD) are caused by mutations to the Dysferlin and Dystrophin genes, respectively. We have recently demonstrated in typically mild dysferlin- and dystrophin-deficient mouse models that increased plasma cholesterol levels severely exacerbate muscle wasting, and that DMD patients display primary dyslipidemia characterized by elevated plasma cholesterol and triglycerides. Herein, we investigate lipoprotein abnormalities in LGMD2B and if statin therapy protects dysferlin-deficient mice (Dysf) from muscle damage. Herein, lipoproteins and liver enzymes from LGMD2B patients and dysferlin-null (Dysf) mice were analyzed. Simvastatin, which exhibits anti-muscle wasting effects in mouse models of DMD and corrects aberrant expression of key markers of lipid metabolism and endogenous cholesterol synthesis, was tested in Dysf mice. Muscle damage and fibrosis were assessed by immunohistochemistry and cholesterol signalling pathways via Western blot. LGMD2B patients show reduced serum high-density lipoprotein cholesterol (HDL-C) levels compared to healthy controls and exhibit a greater prevalence of abnormal total cholesterol (CHOL)/HDL-C ratios despite an absence of liver dysfunction. While Dysf mice presented with reduced CHOL and associated HDL-C and LDL-C-associated fractions, simvastatin treatment did not prevent muscle wasting in quadriceps and triceps muscle groups or correct aberrant low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) protein expression. LGMD2B patients present with reduced serum concentrations of HDL-C, a major metabolic comorbidity, and as a result, statin therapy is unlikely to prevent muscle wasting in this population. We propose that like DMD, LGMD2B should be considered as a new type of genetic dyslipidemia.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Distrofia Muscular de Cinturas , Ratones , Animales , Disferlina/genética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Distrofina , HDL-Colesterol , Distrofia Muscular de Cinturas/tratamiento farmacológico , Distrofia Muscular de Cinturas/genética , Atrofia Muscular , Simvastatina/farmacología , Simvastatina/uso terapéutico
4.
Risk Anal ; 42(12): 2720-2734, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35102598

RESUMEN

This study couples FN-curves with Agent-based Modeling and Simulation (ABMS) to assess risk for tsunamis with various recurrence intervals . By considering both expected number of casualties and the likelihood of tsunami events, multiple series of simulations and in-depth analyses determine (1) how vertical evacuation structure (VES) placement impacts mortality rate; (2) what the best evacuation strategies VES locations are; and (3) where evacuees are likely to be caught by tsunami waves. The results from utilizing FN-curves to conduct disaggregative analyses based on six tsunami scenarios indicate that choosing one tsunami scenario or averaging the risk of different scenarios may not fully articulate VES impacts due to the "levee effect," which potentially leads to false positives. Findings show that placing VESs close to shorelines saves nearby at-risk populations, but also results in two risk increasing phenomena: "exposure to risk" (i.e., evacuees being attracted to high risk roads by a VES when evacuating) and "blind zones" (i.e., locations near a VES where evacuees increase their risk by evacuating to that VES). When limited to one VES, placement near a population's centroid results in the lowest mortality rate. More than one VES may lower mortality rate further if VESs are spreading out according to community's topography. In addition to the analysis of tsunamis, the approach of coupling FN-curves with ABMS can be used by local authorities and engineers to determine tailored hard-adaptive measures and evacuation strategies, which helps to avoid maladaptive actions in different hazardous events.

5.
Brain ; 144(8): 2427-2442, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-33792664

RESUMEN

Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Inositol Polifosfato 5-Fosfatasas/genética , Mutación , Fenotipo , Fosfoglicerato-Deshidrogenasa/genética , Degeneraciones Espinocerebelosas/genética , Adolescente , Adulto , Animales , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Proteómica , Degeneraciones Espinocerebelosas/patología , Pez Cebra
6.
Muscle Nerve ; 64(1): 43-49, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33683712

RESUMEN

INTRODUCTION: One of the hallmarks of injured skeletal muscle is the appearance of elevated skeletal muscle proteins in circulation. Human skeletal muscle generally consists of a mosaic of slow (type I) and fast (type IIa, IIx/d) fibers, defined by their myosin isoform expression. Recently, measurement of circulating fiber-type specific isoforms of troponin I has been used as a biomarker to suggest that muscle injury in healthy volunteers (HV) results in the appearance of muscle proteins from fast but not slow fibers. We sought to understand if this is also the case in severe myopathy patients with Becker and Duchenne muscular dystrophy (BMD, DMD). METHODS: An enzyme-linked immunosorbent assay (ELISA) that selectively measures fast and slow skeletal troponin I (TNNI2 and TNNI1) was used to measure a cross-section of patient plasma samples from HV (N = 50), BMD (N = 49), and DMD (N = 132) patients. Creatine kinase (CK) activity was also measured from the same samples for comparison. RESULTS: TNNI2 was elevated in BMD and DMD and correlated with the injury biomarker, CK. In contrast, TNNI1 levels were indistinguishable from levels in HV. There was an inverse relationship between CK and TNNI2 levels and age, but no relationship for TNNI1. DISCUSSION: We define a surprising discrepancy between TNNI1 and TNNI2 in patient plasma that may have implications for the interpretation of elevated muscle protein levels in dystrophinopathies.


Asunto(s)
Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/diagnóstico , Troponina I/sangre , Adolescente , Adulto , Biomarcadores/sangre , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
7.
Glia ; 69(3): 594-608, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32970902

RESUMEN

Fragile X syndrome (FXS) is one of the most common inherited intellectual disability (ID) disorders, in which the loss of FMRP protein induces a range of cellular signaling changes primarily through excess protein synthesis. Although neuron-centered molecular and cellular events underlying FXS have been characterized, how different CNS cell types are involved in typical FXS synaptic signaling changes and behavioral phenotypes is largely unknown. Recent evidence suggests that selective loss of astroglial FMRP is able to dysregulate glutamate uptake, increase spine density, and impair motor-skill learning. Here we investigated the effect of astroglial FMRP on synaptic signaling and FXS-related behavioral and learning phenotypes in astroglial Fmr1 cKO and cON mice in which FMRP expression is selectively diminished or restored in astroglia. We found that selective loss of astroglial FMRP contributes to cortical hyperexcitability by enhancing NMDAR-mediated evoked but not spontaneous miniEPSCs and elongating cortical UP state duration. Selective loss of astroglial FMRP is also sufficient to increase locomotor hyperactivity, significantly diminish social novelty preference, and induce memory acquisition and extinction deficits in astroglial Fmr1 cKO mice. Importantly, re-expression of astroglial FMRP is able to significantly rescue the hyperactivity (evoked NMDAR response, UP state duration, and open field test) and social novelty preference in astroglial Fmr1 cON mice. These results demonstrate a profound role of astroglial FMRP in the evoked synaptic signaling, spontaneously occurring cortical UP states, and FXS-related behavioral and learning phenotypes and provide important new insights in the cell type consideration for the FMRP reactivation strategy.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Astrocitos , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Ratones , Fenotipo , Receptores de N-Metil-D-Aspartato
8.
J Clin Lipidol ; 14(4): 459-469.e0, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32593511

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic X-linked recessive muscle diseases caused by mutations in the DMD gene, with DMD being the more severe form. We have recently shown that increased plasma low-density lipoprotein-associated cholesterol causes severe muscle wasting in the mdx mouse, a mild DMD model, which suggested that plasma lipids may play a critical role in DMD. We have also observed that loss of dystrophin in mice causes unexpected elevations in plasma lipoprotein levels. OBJECTIVE: The objectives of the study were to determine whether patients with DMD and BMD also present with clinically relevant plasma lipoprotein abnormalities and to mitigate the presence of confounders (medications and lifestyle) by analyzing the plasma from patients with DMD/BMD and unmedicated dogs with DMD, the most relevant model of DMD. METHODS: Levels of low-density lipoprotein-associated cholesterol, high-density lipoprotein cholesterol, and triglycerides were analyzed in patients with DMD and BMD and female carriers. Samples from unmedicated, ambulatory dogs with DMD, unaffected carriers, and normal controls were also analyzed. RESULTS: We report that 97% and 64% of all pediatric patients with DMD (33 of 36) and BMD (6 of 11) are dyslipidemic, along with an unusually high incidence in adult patients with BMD. All dogs with DMD showed plasma lipid abnormalities that progressively worsened with age. Most strikingly, unaffected carrier dogs also showed plasma lipid abnormalities similar to affected dogs with DMD. Dyslipidemia is likely not secondary to liver damage as unaffected carriers showed no plasma aminotransferase elevation. CONCLUSIONS: The high incidence of plasma lipid abnormalities in dystrophin-deficient plasma may depict a new type of genetic dyslipidemia. Abnormal lipid levels in dystrophinopathic samples in the absence of muscle damage suggest a primary state of dyslipidemia. Whether dyslipidemia plays a causal role in patients with DMD warrants further investigation, which could lead to new diagnostic and therapeutic options.


Asunto(s)
Enfermedades de los Perros/sangre , Dislipidemias/complicaciones , Dislipidemias/genética , Lípidos/sangre , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/complicaciones , Adulto , Animales , Niño , Perros , Femenino , Humanos , Masculino , Prevalencia
9.
J Cell Biol ; 219(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32236517

RESUMEN

Plasma membrane injury can cause lethal influx of calcium, but cells survive by mounting a polarized repair response targeted to the wound site. Mitochondrial signaling within seconds after injury enables this response. However, as mitochondria are distributed throughout the cell in an interconnected network, it is unclear how they generate a spatially restricted signal to repair the plasma membrane wound. Here we show that calcium influx and Drp1-mediated, rapid mitochondrial fission at the injury site help polarize the repair response. Fission of injury-proximal mitochondria allows for greater amplitude and duration of calcium increase in these mitochondria, allowing them to generate local redox signaling required for plasma membrane repair. Drp1 knockout cells and patient cells lacking the Drp1 adaptor protein MiD49 fail to undergo injury-triggered mitochondrial fission, preventing polarized mitochondrial calcium increase and plasma membrane repair. Although mitochondrial fission is considered to be an indicator of cell damage and death, our findings identify that mitochondrial fission generates localized signaling required for cell survival.


Asunto(s)
Membrana Celular/genética , Dinaminas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética , Animales , Apoptosis/genética , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Membrana Celular/patología , Fibroblastos , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Transducción de Señal/genética
10.
Neurobiol Dis ; 124: 218-229, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30468864

RESUMEN

BACKGROUND: Marinesco-Sjögren Syndrome (MSS) is a rare neuromuscular condition caused by recessive mutations in the SIL1 gene resulting in the absence of functional SIL1 protein, a co-chaperone for the major ER chaperone, BiP. As BiP is decisive for proper protein processing, loss of SIL1 results in the accumulation of misshaped proteins. This accumulation likely damages and destroys cells in vulnerable tissues, leading to congenital cataracts, cerebellar ataxia, vacuolar myopathy and other MSS phenotypes. Whether the peripheral nervous system (PNS) is affected in MSS has not been conclusively shown. METHODS: To study PNS vulnerability in MSS, intramuscular nerves fibres from MSS patients and from SIL1-deficient mice (woozy) as well as sciatic nerves and neuromuscular junctions (NMJ) from these mice have been investigated via transmission electron microscopic and immunofluorescence studies accompanied by transcript studies and unbiased proteomic profiling. In addition, PNS and NMJ integrity were analyzed via immunofluorescence studies in an MSS-zebrafish model which has been generated for that purpose. RESULTS: Electron microscopy revealed morphological changes indicative of impaired autophagy and mitochondrial maintenance in distal axons and in Schwann cells. Moreover, changes of the morphology of NMJs as well as of transcripts encoding proteins important for NMJ function were detected in woozy mice. These findings were in line with a grossly abnormal structure of NMJs in SIL1-deficient zebrafish embryos. Proteome profiling of sciatic nerve specimens from woozy mice revealed altered levels of proteins implicated in neuronal maintenance suggesting the activation of compensatory mechanisms. CONCLUSION: Taken together, our combined data expand the spectrum of tissues affected by SIL1-loss and suggest that impaired neuromuscular transmission might be part of MSS pathophysiology.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Unión Neuromuscular/patología , Nervio Ciático/ultraestructura , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/patología , Animales , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/deficiencia , Humanos , Ratones Transgénicos , Músculo Esquelético/inervación , Músculo Esquelético/ultraestructura , Unión Neuromuscular/metabolismo , Proteómica , Nervio Ciático/metabolismo , Degeneraciones Espinocerebelosas/metabolismo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
11.
Hum Mol Genet ; 27(9): 1556-1564, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29462491

RESUMEN

Inherited defects of the neuromuscular junction (NMJ) comprise an increasingly diverse range of disorders, termed congenital myasthenic syndromes (CMS). Therapies acting on the sympathetic nervous system, including the selective ß2 adrenergic agonist salbutamol and the α and ß adrenergic agonist ephedrine, have become standard treatment for several types of CMS. However, the mechanism of the therapeutic effect of sympathomimetics in these disorders is not understood. Here, we examined the effect of salbutamol on NMJ development using zebrafish with deficiency of the key postsynaptic proteins Dok-7 and MuSK. Treatment with salbutamol reduced motility defects in zebrafish embryos and larvae. In addition, salbutamol lead to morphological improvement of postsynaptic acetycholine receptor (AChR) clustering and size of synaptic contacts in Dok-7-deficient zebrafish. In MuSK-deficient zebrafish, salbutamol treatment reduced motor axon pathfinding defects and partially restored the formation of aneural prepatterned AChRs. In addition, the effects of salbutamol treatment were prevented by pre-treatment with a selective ß2 antagonist. Treatment with the cyclic adenosine monophosphate (cAMP) activator forskolin, replicated the effects of salbutamol treatment. These results suggest that sympathomimetics exert a direct effect on neuromuscular synaptogenesis and do so via ß2 adrenoceptors and via a cAMP-dependent pathway.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Albuterol/farmacología , Síndromes Miasténicos Congénitos , Unión Neuromuscular/efectos de los fármacos , Animales , Colforsina/farmacología , Técnica del Anticuerpo Fluorescente , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra
12.
Am J Hum Genet ; 100(3): 523-536, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28190456

RESUMEN

Phosphoinositides are small phospholipids that control diverse cellular downstream signaling events. Their spatial and temporal availability is tightly regulated by a set of specific lipid kinases and phosphatases. Congenital muscular dystrophies are hereditary disorders characterized by hypotonia and weakness from birth with variable eye and central nervous system involvement. In individuals exhibiting congenital muscular dystrophy, early-onset cataracts, and mild intellectual disability but normal cranial magnetic resonance imaging, we identified bi-allelic mutations in INPP5K, encoding inositol polyphosphate-5-phosphatase K. Mutations impaired phosphatase activity toward the phosphoinositide phosphatidylinositol (4,5)-bisphosphate or altered the subcellular localization of INPP5K. Downregulation of INPP5K orthologs in zebrafish embryos disrupted muscle fiber morphology and resulted in abnormal eye development. These data link congenital muscular dystrophies to defective phosphoinositide 5-phosphatase activity that is becoming increasingly recognized for its role in mediating pivotal cellular mechanisms contributing to disease.


Asunto(s)
Catarata/genética , Disfunción Cognitiva/genética , Distrofia Muscular de Cinturas/genética , Anomalías Musculoesqueléticas/genética , Monoéster Fosfórico Hidrolasas/genética , Adolescente , Adulto , Alelos , Animales , Encéfalo/patología , Niño , Preescolar , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/patología , Mutación , Linaje , Adulto Joven , Pez Cebra/embriología , Pez Cebra/genética
13.
Proc Natl Acad Sci U S A ; 113(3): 746-50, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26733679

RESUMEN

The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic ß2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function.


Asunto(s)
Salud , Homeostasis , Enfermedades del Sistema Nervioso/patología , Unión Neuromuscular/patología , Sistema Nervioso Simpático/patología , Transporte Activo de Núcleo Celular , Animales , Técnicas Biosensibles , Núcleo Celular/metabolismo , AMP Cíclico/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Músculo Esquelético/inervación , Unión Neuromuscular/metabolismo , Neuronas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenotipo , Transducción de Señal , Simpatectomía , Sistema Nervioso Simpático/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA