Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 14(12): e0226940, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31891641

RESUMEN

Diets high in saturated fatty acids are linked to increased cardiovascular disease risk, whereas monounsaturated fatty acids have been associated with improved cardiovascular outcomes. Accordingly, cell culture studies have demonstrated that saturated fatty acids, particularly long chain saturated fatty acids such as palmitate, induce dysfunction and cell death in a variety of cell types, and monounsaturated fatty acids may confer protection against palmitate-mediated damage. The aim of the present study was to examine whether monounsaturated fatty acids could protect against palmitate-mediated cell death in endothelial cells, to determine if AMPK inactivation and activation (via compound C and AICAR, respectively) underlies both palmitate-induced damage and monounsaturated fatty acid-mediated protection, and to explore the role of ER stress in this context. Human umbilical vein endothelial cells were examined for cell viability and apoptosis following treatment for 24 hours with palmitate (0.25 and 0.5mM) alone or in combination with the monounsaturated fatty acids oleate or palmitoleate (0.25 and 0.5mM), AICAR, compound C, 4µ8C, or TUDCA. Compared to control cells, palmitate significantly decreased cell viability and increased apoptosis in a dose-dependent manner. The monounsaturated fatty acids oleate and palmitoleate completely prevented the cytotoxic effects of palmitate. Although palmitate induced markers of ER stress, chemical inhibition of ER stress did not prevent palmitate-induced lipoapoptosis. Conversely, the AMPK activator AICAR (0.1 and 0.5mM) conferred protection from palmitate mediated-alterations in viability, apoptosis and ER stress, whereas the AMPK inhibitor compound C (20 and 40µM) significantly exacerbated palmitate-mediated damage. Lastly, co-incubation with palmitate, monounsaturated fatty acids, and compound C significantly mitigated the protective effects of both oleate and palmitoleate. In conclusion, monounsaturated fatty acids confer protection against the cytotoxic effects of palmitate in vascular endothelial cells; and palmitate-mediated damage, as well as monounsaturated-mediated protection, are due in part to inactivation and activation, respectively, of the metabolic regulator AMPK. These results may have implications for understanding the deleterious effects of high saturated fat diets on cardiovascular dysfunction and disease risk.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Apoptosis/efectos de los fármacos , Grasas de la Dieta/efectos adversos , Ácidos Grasos Monoinsaturados/administración & dosificación , Ácido Palmítico/efectos adversos , Ribonucleótidos/farmacología , Adenilato Quinasa/antagonistas & inhibidores , Adenilato Quinasa/metabolismo , Aminoimidazol Carboxamida/farmacología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/prevención & control , Supervivencia Celular/efectos de los fármacos , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Palmítico/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología
2.
PLoS One ; 12(5): e0176446, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28472101

RESUMEN

We recently demonstrated that short-term estradiol (E2) treatment improved insulin-mediated suppression of lipolysis in postmenopausal women, but to a greater extent in those who were late compared to early postmenopausal. In this follow-up study we tested whether subcutaneous adipose tissue (SAT) expression of estrogen receptors (ER) α and ß differs between early and late postmenopausal women. We further tested whether the balance of ERα to ERß in SAT determined the effect of E2 on SAT insulin sensitivity. The present study included 35 women who were ≤6 years past menopause (EPM; n = 16) or ≥10 years past menopause (LPM; n = 19). Fasted SAT samples were taken following 1-week transdermal E2 treatment or placebo (PL) in a random cross-over design. Samples were analyzed for nuclear/cytosolic protein content and mRNA expression using Western blot and qPCR, respectively. While ESR1 increased slightly (~1.4-fold) following E2 treatment in both groups, ERα and ERß protein expression did not differ between groups at baseline or in response to E2. However, the balance of ERα/ERß protein in the SAT nuclear fraction increased 10% in EPM compared to a 25% decrease in LPM women (group x treatment interaction, p<0.05). A greater proportion of ERα/ERß protein in the nuclear fraction of SAT at baseline (placebo day) was associated with greater reduction in SAT insulin resistance (i.e., better suppression of lipolysis, EC50) in response to E2 (r = -0.431, p<0.05). In conclusion, there do not appear to be differences in the proportion of adipose tissue ERα/ERß protein in late, compared to early, postmenopausal women. However, the balance of ERα/ERß may be important for E2-mediated improvement in adipose tissue insulin sensitivity. TRIAL REGISTRATION: Clinical Trials#: NCT01605071.


Asunto(s)
Tejido Adiposo/metabolismo , Estradiol/administración & dosificación , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Resistencia a la Insulina , Posmenopausia , Anciano , Estudios Cruzados , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Femenino , Humanos , Persona de Mediana Edad , Placebos
3.
J Cell Mol Med ; 21(4): 677-684, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27862950

RESUMEN

The goal of this study was to determine the effect of acute transdermal 17ß-oestradiol (E2 ) on the adipogenic potential of subcutaneous adipose-derived stem cells (ASC) in post-menopausal women. Post-menopausal women (n = 11; mean age 57 ± 4.5 years) were treated for 2 weeks, in a randomized, cross-over design, with transdermal E2 (0.15 mg) or placebo patches. Biopsies of abdominal (AB) and femoral (FEM) subcutaneous adipose tissue (SAT) were obtained after each treatment and mature adipocytes were analysed for cell size and ASC for their capacity for proliferation (growth rate), differentiation (triglyceride accumulation) and susceptibility to tumour necrosis factor alpha-induced apoptosis. Gene expression of oestrogen receptors α and ß (ESR1 and ESR2), perilipin 1 and hormone-sensitive lipase (HSL), was also assessed. In FEM SAT, but not AB SAT, 2 weeks of E2 significantly (P = 0.03) increased ASC differentiation and whole SAT HSL mRNA expression (P = 0.03) compared to placebo. These changes were not associated with mRNA expression of oestrogen receptors α and ß, but HSL expression was significantly increased in FEM SAT with transdermal E2 treatment. Adipose-derived stem cells proliferation and apoptosis did not change in either SAT depot after E2 compared with placebo. Short-term E2 appeared to increase the adipogenic potential of FEM, but not AB, SAT in post-menopausal women with possible implications for metabolic disease. Future studies are needed to determine longer term impact of E2 on regional SAT accumulation in the context of positive energy imbalance.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Estradiol/farmacología , Especificidad de Órganos/efectos de los fármacos , Posmenopausia/fisiología , Células Madre/citología , Grasa Subcutánea/citología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo
4.
Physiol Rep ; 3(8)2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26265751

RESUMEN

The increased risk for cardiometabolic disease with the onset of menopause is widely studied and likely precipitated by the decline in endogenous estradiol (E2), yet the precise mechanisms are unknown. The gut microbiome is involved in estrogen metabolism and has been linked to metabolic disease, suggesting its potential involvement in the postmenopausal phenotype. Furthermore, menopause-associated risk factors, as well as gut ecology, are altered with exercise. Therefore, we studied microbial changes in an ovariectomized (OVX vs. Sham) rat model of high (HCR) and low (LCR) intrinsic aerobic capacity (n = 8-10/group) in relation to changes in body weight/composition, glucose tolerance, and liver triglycerides (TG). Nine weeks after OVX, HCR rats were moderately protected against regional adipose tissue gain and liver TG accumulation (P < 0.05 for both). Microbial diversity and number of the Bacteroidetes phylum were significantly increased in LCR with OVX, but unchanged in HCR OVX relative to Sham. Plasma short-chain fatty acids (SCFA), produced by bacteria in the gut and recognized as metabolic signaling molecules, were significantly greater in HCR Sham relative to LCR Sham rats (P = 0.05) and were decreased with OVX in both groups. These results suggest that increased aerobic capacity may be protective against menopause-associated cardiometabolic risk and that gut ecology, and production of signaling molecules such as SCFA, may contribute to the mediation.

5.
Am J Physiol Endocrinol Metab ; 309(1): E63-71, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25968576

RESUMEN

Femoral subcutaneous adipose tissue (SAT) appears to be cardioprotective compared with abdominal SAT, possibly through better triglyceride (TG) sequestration. We hypothesized that removal of femoral SAT would increase postprandial TG through a reduction in dietary fatty acid (FA) storage. Normal-weight (means ± SD; BMI 23.9 ± 2.6 kg/m(2)) women (n = 29; age 45 ± 6 yr) were randomized to femoral lipectomy (LIPO) or control (CON) and followed for 1 yr. Regional adiposity was measured by DEXA and CT. A liquid meal labeled with [(14)C]oleic acid was used to trace the appearance of dietary FA in plasma (6-h postprandial TG), breath (24-h oxidation), and SAT (24-h [(14)C]TG storage). Fasting LPL activity was measured in abdominal and femoral SAT. DEXA leg fat mass was reduced after LIPO vs. CON (Δ-1.4 ± 0.7 vs. 0.1 ± 0.5 kg, P < 0.001) and remained reduced at 1 yr (-1.1 ± 1.4 vs. -0.2 ± 0.5 kg, P < 0.05), as did CT thigh subcutaneous fat area (-39.6 ± 36.6 vs. 4.7 ± 14.6 cm(2), P < 0.05); DEXA trunk fat mass and CT visceral fat area were unchanged. Postprandial TG increased (5.9 ± 7.7 vs. -0.6 ± 5.3 × 10(3) mg/dl, P < 0.05) and femoral SAT LPL activity decreased (-21.9 ± 22.3 vs. 10.5 ± 26.5 nmol·min(-1)·g(-1), P < 0.05) 1 yr following LIPO vs. CON. There were no group differences in (14)C-labeled TG appearing in abdominal and femoral SAT or elsewhere. In conclusion, femoral fat remained reduced 1 yr following lipectomy and was accompanied by increased postprandial TG and reduced femoral SAT LPL activity. There were no changes in storage of meal-derived FA or visceral fat. Our data support a protective role for femoral adiposity on circulating TG independent of dietary FA storage and visceral adiposity.


Asunto(s)
Hiperlipidemias/etiología , Lipectomía , Grasa Subcutánea/cirugía , Muslo/cirugía , Adiposidad/fisiología , Adulto , Femenino , Humanos , Hiperlipidemias/sangre , Lipectomía/métodos , Persona de Mediana Edad , Complicaciones Posoperatorias/sangre , Periodo Posprandial , Grasa Subcutánea Abdominal/cirugía , Triglicéridos/sangre
6.
Obesity (Silver Spring) ; 23(1): 145-53, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25354893

RESUMEN

OBJECTIVES: Postprandial lipemia worsens after menopause, but the mechanism remains unknown. The hypothesized menopause-related postprandial lipemia would be (1) associated with reduced storage of dietary fatty acids (FA) as triglyceride (TG) in subcutaneous adipose tissue (SAT) and (2) improved by short-term estradiol (E2 ). METHODS: Twenty-three pre- (mean ± SD: 42 ± 4 years) and 22 postmenopausal (55 ± 4 years) women with similar total adiposity were studied. A subset of postmenopausal women (n = 12) were studied following 2 weeks of E2 (0.15 mg) and matching placebo in a random, cross-over design. A liquid meal containing (14) C-oleic acid traced appearance of dietary FA in: serum (postprandial TG), breath (oxidation), and abdominal and femoral SAT (TG storage). RESULTS: Compared to premenopausal women, healthy, lean, postmenopausal women had increased postprandial glucose and insulin and trend for higher TG but had similar dietary FA oxidation and storage. Adipocytes were larger in post- compared to premenopausal women, particularly in femoral SAT. Short-term E2 reduced postprandial TG and insulin but had no effect on oxidation or storage of dietary FA. E2 increased the proportion of small adipocytes in femoral (but not abdominal) SAT. CONCLUSIONS: Short-term E2 attenuated menopause-related increases in postprandial TG and increased femoral adipocyte hyperplasia but not through increased net storage of dietary FA.


Asunto(s)
Grasas de la Dieta/metabolismo , Estradiol/farmacología , Ácidos Grasos/metabolismo , Menopausia/metabolismo , Periodo Posprandial , Grasa Subcutánea/metabolismo , Triglicéridos/sangre , Adulto , Estradiol/sangre , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Comidas , Persona de Mediana Edad , Grasa Subcutánea/efectos de los fármacos
7.
Metabolism ; 62(2): 244-54, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22974968

RESUMEN

OBJECTIVE: Exercise has been suggested to have cardioprotective benefits due to a lowering of postprandial triglycerides (PPTG). We hypothesized that a morning exercise bout would significantly lower PPTG measured over a full day, in response to moderate fat meals (35% energy) in men more so than women, and in metabolic syndrome (MetS) relative to normal weight (NW) individuals. MATERIALS/METHODS: Participants completed two randomized study days; one control and one exercise day (60 min of morning exercise, 60% VO(2peak)). Meals were consumed at breakfast, lunch and dinner with the energy expended during exercise replaced on the active day. The areas (AUC) and incremental areas (IAUC) under the curve were calculated for total triglycerides, total cholesterol and other metabolites. RESULTS: Exercise did not significantly change the PPTG AUC & IAUC overall, or within, or between, each sex or group (NW and MetS). Exercise induced a 30% decrease in total cholesterol IAUC (p=0.003) in NW subjects. Overall, women had a lower IAUC for PPTG compared to men (p=0.037), with the greatest difference between MetS women and MetS men, due to a sustained drop in TG after lunch in the women. This suggests that PP, rather than fasting, lipid analyses may be particularly important when evaluating sex differences in metabolic risk. CONCLUSIONS: With energy replacement, moderate morning exercise did not result in a significant decrease in PPTG excursions. Exercise did elicit a significant decrease in PP cholesterol levels in NW subjects, suggesting a potential mechanism for the cardioprotective effects of exercise.


Asunto(s)
Colesterol/sangre , Ejercicio Físico/fisiología , Hiperlipidemias/metabolismo , Síndrome Metabólico/metabolismo , Triglicéridos/sangre , Adiponectina/sangre , Adolescente , Adulto , Área Bajo la Curva , Glucemia/metabolismo , Estudios Cruzados , Ácidos Grasos no Esterificados/sangre , Femenino , Humanos , Hiperlipidemias/sangre , Insulina/sangre , Masculino , Síndrome Metabólico/sangre , Periodo Posprandial , Factores Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA