Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 153(8): 081103, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872854

RESUMEN

Directional control over surface plasmon polariton (SPP) waves is a prerequisite for the development of miniaturized optical circuitry. Here, the efficacy of single and dual component SPP steering elements is explored through photoemission electron microscopy. Our imaging scheme relies on two-color photoemission and counter-propagating SPP generation, which collectively allow SPPs to be visualized in real space. Wave-vector difference mixing between the two-dimensional nanohole array and photon momenta enables SPP steering with directionality governed by the array lattice constant and input photon direction. In our dual component configuration, separate SPP generation and Bragg diffraction based steering optics are employed. We find that array Bragg planes principally influence the SPP angles through the array band structure, which allows us to visualize both positive and negative refractory waves.

2.
ACS Nano ; 14(4): 5061-5074, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167744

RESUMEN

The structure and ultrafast photodynamics of ∼8 nm Au@Pt core-shell nanocrystals with ultrathin (<3 atomic layers) Pt-Au alloy shells are investigated to show that they meet the design principles for efficient bimetallic plasmonic photocatalysis. Photoelectron spectra recorded at two different photon energies are used to determine the radial concentration profile of the Pt-Au shell and the electron density near the Fermi energy, which play a key role in plasmon damping and electronic and thermal conductivity. Transient absorption measurements track the flow of energy from the plasmonic core to the electronic manifold of the Pt shell and back to the lattice of the core in the form of heat. We show that strong coupling to the high density of Pt(d) electrons at the Fermi level leads to accelerated dephasing of the Au plasmon on the femtosecond time scale, electron-electron energy transfer from Au(sp) core electrons to Pt(d) shell electrons on the sub-picosecond time scale, and enhanced thermal resistance on the 50 ps time scale. Electron-electron scattering efficiently funnels hot carriers into the ultrathin catalytically active shell at the nanocrystal surface, making them available to drive chemical reactions before losing energy to the lattice via electron-phonon scattering on the 2 ps time scale. The combination of strong broadband light absorption, enhanced electromagnetic fields at the catalytic metal sites, and efficient delivery of hot carriers to the catalyst surface makes core-shell nanocrystals with plasmonic metal cores and ultrathin catalytic metal shells promising nanostructures for the realization of high-efficiency plasmonic catalysts.

3.
J Phys Chem Lett ; 11(7): 2464-2469, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32160470

RESUMEN

We record nanoscale chemical images of thiobenzonitrile (TBN)-functionalized plasmonic gold nanocubes via tip-enhanced Raman spectroscopy (TERS). The spatially averaged optical response is dominated by conventional (dipolar) TERS scattering from TBN but also contains weaker spectral signatures in the 1225-1500 cm-1 region. The weak optical signatures dominate several of the recorded single-pixel TERS spectra. We can uniquely assign these Raman-forbidden transitions to multipolar Raman scattering, which implicates spatially varying enhanced electric field gradients at plasmonic tip-sample nanojunctions. Specifically, we can assign observations of tip-enhanced electric dipole-magnetic dipole as well as electric dipole-electric quadrupole driven transitions. Multipolar Raman scattering and local optical field gradients both need to be understood and accounted for in the interpretation of TERS spectral images, particularly in ongoing quests aimed at chemical reaction mapping via TERS.

4.
J Phys Chem Lett ; 11(5): 1915-1920, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32078775

RESUMEN

A series of optical and electron microscopies are utilized in concert to unravel the properties of corrugated metallic tips. While the overall microscopic shapes of the tips dictate their optical resonances and plasmonic field enhancement factors, nanometric structural details govern their tip-enhanced Raman (TER) spectra and images. Using 4-thiobenzonitrile (TBN) as a molecular reporter, spatially resolved TER spectra reveal that optical rectification and molecular charging are among the prominent observables in the tip-tip TER geometry. We show the spurious appearance of anions is driven by highly localized resonances that appear as a result of surface corrugation and their manifestation throughout the course of TER nanospectroscopy complicates spectral assignments. Overall, nanoscale spatial variations in the TERS spectra suggest that the tip-tip geometry sustains junction plasmons that appear very different from what may be expected from the hybridization of the bulk tip resonances.

5.
J Phys Chem Lett ; 10(19): 5694-5699, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31498629

RESUMEN

We deploy two-dimensional nanohole arrays as resonant surface plasmon polariton (SPP) couplers that enable counter-propagation and excitation field interference-free imaging of SPP wave packets. We monitor the spatiotemporal evolution of the resulting SPPs using two-color photoemission electron microscopy. The measurements track the electric field envelope of the SPP in real space and time and enable direct characterization of their spatiotemporal properties in a regime where the SPP wave packet is the principal observable. We provide an analysis of the observables for both the co- and counter-propagating directions via SPP trajectories that are recorded in tandem. Our results highlight the advantages of isolating SPPs through counter-propagation, where excitation field-SPP interactions are suppressed.

6.
ACS Nano ; 13(6): 6363-6371, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31046235

RESUMEN

Tip-enhanced Raman scattering (TERS) with a cobalt tetraphenylporphyrin (CoTPP)- terminated silver tip is used to obtain ion-selective, atomically resolved images of an insulating Cu2N monolayer grown on Cu(100). Ion selective images are obtained through vibrational frequency shift maps using CoTPP vibrations with oppositely signed Stark tuning rates (STR). The images allow a quantitative analysis of the electrostatic field of the ionic lattice using in situ calibrated STRs. Both intensity and Stark shift maps yield atomically resolved images in the tunneling regime of plasmons. We show that the CoTPP is bonded to the Ag tip through its central Co atom, whereby TERS taps into intramolecular currents and polarizations. The bias dependence of vibrational line intensities shows diode-like response with opposite polarity for current carrying modes of opposite polarization phase. The phase sensitive detection of vibrational lines and their voltage gating is explained in terms of distinct field- and phototunneling current-driven Raman, offering an alternate paradigm for the long-sought optoelectronic rectifier in molecular electronics.

7.
Nature ; 568(7750): 78-82, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944493

RESUMEN

The internal vibrations of molecules drive the structural transformations that underpin chemistry and cellular function. While vibrational frequencies are measured by spectroscopy, the normal modes of motion are inferred through theory because their visualization would require microscopy with ångström-scale spatial resolution-nearly three orders of magnitude smaller than the diffraction limit in optics1. Using a metallic tip to focus light and taking advantage of the surface-enhanced Raman effect2 to amplify the signal from individual molecules, tip-enhanced Raman spectromicroscopy (TER-SM)3,4 reaches the requisite sub-molecular spatial resolution5, confirming that light can be confined in picocavities6-10 and anticipating the direct visualization of molecular vibrations11-13. Here, by using TER-SM at the precisely controllable junction of a cryogenic ultrahigh-vacuum scanning tunnelling microscope14-16, we show that ångström-scale resolution is attained at subatomic separation between the tip atom and a molecule in the quantum tunnelling regime of plasmons6,8,9,17. We record vibrational spectra within a single molecule, obtain images of normal modes and atomically parse the intramolecular charges and currents driven by vibrations. Our analysis provides a paradigm for optics in the atomistic near-field.

8.
J Phys Chem Lett ; 9(24): 7105-7109, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30517015

RESUMEN

We image 4-mercaptobenzonitrile-functionalized silver nanowires (∼20 nm diameter) through tip-enhanced Raman scattering (TERS). The enhanced local optical field-molecular interactions that govern the recorded hyperspectral TERS images are dissected through hybrid finite-difference time-domain density functional theory simulations. Our forward simulations illustrate that the recorded spatiospectral profiles of the chemically functionalized nanowires may be reproduced by accounting for the interaction between orientationally averaged molecular polarizability derivative tensors and enhanced incident/scattered local fields polarized along the tip axis. In effect, we directly map the enhanced optical fields of the nanowire in real space through TERS. The simultaneously recorded atomic force microscopy (AFM) images allow a direct comparison between our attainable spatial resolution in topographic (13 nm) and TERS (5 nm) imaging measurements performed under ambient conditions. Overall, our described protocol enables local electric field imaging with few nm precision through molecular TERS, and it is therefore generally applicable to a variety of plasmonic nanostructures.

9.
Nano Lett ; 18(9): 5791-5796, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30064221

RESUMEN

Molecular surface-enhanced Raman spectra recorded at single plasmonic nanojunctions using a 7 ps pulse train exhibit vibrational up-pumping and population inversion. The process is assigned to plasmon-driven, dark, impulsive electron-vibration (e-v) excitation. Both optical (Raman) pumping and hot-electron mediated excitation can be rejected by the characteristic spectra, which allow the simultaneous measurement of vibrational temperature of the molecules and electronic temperature of the metal. Vibrational populations are determined from anti-Stokes to Stokes intensity ratios, while the electron temperature is obtained from the anti-Stokes branch of the electronic Raman scattering continuum. Population inversion survives in high-frequency vibrations that effectively decouple from the metal.

10.
J Phys Chem A ; 122(37): 7437-7442, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30148635

RESUMEN

Nonequilibrium chemical phenomena are known to play an important role in single molecule microscopy and spectroscopy. Herein, we explore these effects through ab initio molecular dynamics (AIMD)-based Raman spectral simulations. We target an isolated aromatic thiol (thiobenzonitrile, TBN) as a prototypical molecular system. We first show that the essential features contained in the ensemble-averaged Raman spectrum of TBN can be reproduced by averaging over 18 short AIMD trajectories spanning a total simulation time of ∼60 ps. This involved more than 90 000 polarizability calculations at the B3LYP/def2-TZVP level of theory. We then illustrate that the short trajectories (∼3.3 ps total simulation time), where the accessible phase space is not fully sampled, provide a starting point for understanding key features that are often observed in measurements targeting single molecules. Our results suggest that a complete understanding of single molecule Raman scattering needs to account for molecular conformational flexibility and nonequilibrium chemical phenomena in addition to local optical fields and modified selection rules. The former effects are well-captured using the described AIMD-based single molecule Raman spectral simulations.

11.
Nano Lett ; 18(6): 4029-4033, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29791800

RESUMEN

Tip-enhanced Raman spectroscopy (TERS) is particularly sensitive to analytes residing at plasmonic tip-sample nanojunctions, where the incident and scattered optical fields may be localized and optimally enhanced. However, the enhanced local electric fields in this so-called gap-mode TERS configuration are nominally orthogonal to the sample plane. As such, any given Raman active vibrational eigenstate needs to have projections (of its polarizability derivative tensor elements) along the sample normal to be detectable via TERS. The faint TERS signals observed from two prototypical systems, namely, pristine graphene and graphene oxide are a classical example of the aforementioned rather restrictive TERS selection rules in this context. In this study, we demonstrate that nanoindentation, herein achieved using pulsed-force lithography with a sharp single-crystal diamond atomic force microscope probe, may be used to locally enhance TERS signals from graphene and graphene oxide flakes on gold. Nanoindentation locally perturbs the otherwise flat graphene structure and introduces out-of-plane protrusions that generate enhanced TERS. Although our approach is nominally invasive, we illustrate that the introduced nanodefects are highly localized, as evidenced by TERS nanoscale chemical mapping. As such, the described protocol may be used to extend and generalize the applicability of TERS for the rapid identification of two-dimensional material systems on the nanoscale.

12.
Opt Express ; 23(18): 24019-28, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26368493

RESUMEN

We demonstrate the use of a photonic crystal fiber (PCF) as a compact three-color fs laser system operating at 76 MHz, limited only by the repetition rate of the pump laser. The system is suitable for background-free time-resolved four-wave mixing measurements, which arguably reach fundamental limits in signal detectivity. We give a detailed characterization of the near transform-limited multi-color pulses that are extracted from the PCF, and prove the system through time-resolved coherent anti-Stokes Raman scattering measurements in bipyridyl ethylene and styrene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA