Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
NPJ Vaccines ; 9(1): 159, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218947

RESUMEN

Infections caused by Gram-negative bacteria are leading causes of mortality worldwide. Due to the rise in antibiotic resistant strains, there is a desperate need for alternative strategies to control infections caused by these organisms. One such approach is the prevention of infection through vaccination. While live attenuated and heat-killed bacterial vaccines are effective, they can lead to adverse reactions. Newer vaccine technologies focus on utilizing polysaccharide or protein subunits for safer and more targeted vaccination approaches. One promising avenue in this regard is the use of proteins released by the Type 5 secretion system (T5SS). This system is the most prevalent secretion system in Gram-negative bacteria. These proteins are compelling vaccine candidates due to their demonstrated protective role in current licensed vaccines. Notably, Pertactin, FHA, and NadA are integral components of licensed vaccines designed to prevent infections caused by Bordetella pertussis or Neisseria meningitidis. In this review, we delve into the significance of incorporating T5SS proteins into licensed vaccines, their contributions to virulence, conserved structural motifs, and the protective immune responses elicited by these proteins.

2.
Elife ; 122024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189918

RESUMEN

Klebsiella pneumoniae is a global public health concern due to the rising myriad of hypervirulent and multidrug-resistant clones both alarmingly associated with high mortality. The molecular mechanisms underpinning these recalcitrant K. pneumoniae infection, and how virulence is coupled with the emergence of lineages resistant to nearly all present-day clinically important antimicrobials, are unclear. In this study, we performed a genome-wide screen in K. pneumoniae ECL8, a member of the endemic K2-ST375 pathotype most often reported in Asia, to define genes essential for growth in a nutrient-rich laboratory medium (Luria-Bertani [LB] medium), human urine, and serum. Through transposon directed insertion-site sequencing (TraDIS), a total of 427 genes were identified as essential for growth on LB agar, whereas transposon insertions in 11 and 144 genes decreased fitness for growth in either urine or serum, respectively. These studies not only provide further knowledge on the genetics of this pathogen but also provide a strong impetus for discovering new antimicrobial targets to improve current therapeutic options for K. pneumoniae infections.


Asunto(s)
Elementos Transponibles de ADN , Klebsiella pneumoniae , Orina , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crecimiento & desarrollo , Humanos , Elementos Transponibles de ADN/genética , Orina/microbiología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/orina , Mutagénesis Insercional , Suero/microbiología , Mutagénesis
3.
Blood Adv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968150

RESUMEN

Platelet CLEC-2 is a hemITAM-containing receptor which has a critical role in venous thrombosis, but minimal involvement in haemostasis. CLEC-2 can be blocked by Btk inhibitors. Treatment with ibrutinib is associated with increased bleeding due to off-target inhibition of Src family kinases (SFKs). Patients with X-linked agammaglobulinemia (XLA) who lack Btk however do not bleed, suggesting selective Btk inhibition is a viable antithrombotic strategy. We assessed the effects of selective Btk inhibitors PRN1008 (rilzabrutinib) and PRN473 on platelet signalling and function mediated by CLEC-2 and GPVI. We used healthy donor and XLA platelets to determine off-target inhibitor effects. Inferior vena cava (IVC) stenosis and Salmonella infection mouse models were used to assess antithrombotic effects of PRN473 in vivo. PRN1008 and PRN473 potently inhibited CLEC-2-mediated platelet activation to rhodocytin. No off-target inhibition of SFKs was seen. PRN1008 treatment of Btk-deficient platelets resulted in minor additional inhibition of aggregation and tyrosine phosphorylation, likely reflecting inhibition of Tec. No effect on GPCR-mediated platelet function was observed. PRN473 significantly reduced the number of thrombi in podoplanin positive vessels following Salmonella infection and the presence of IVC thrombosis following vein stenosis. The potent inhibition of human platelet CLEC-2, and reduced thrombosis in in vivo models, together with the lack of off-target SFK inhibition and absence of bleeding reported in rilzabrutinib treated immune thrombocytopenia patients, suggest Btk inhibition as a promising antithrombotic strategy.

4.
Vaccine ; 42(20): 125979, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38760271

RESUMEN

Cholera is responsible for 1.3 to 4.0 million cholera cases globally and poses a significant threat, with Zambia reporting 17,169 cases as of 4th February 2024. Recognizing the crucial link between natural cholera infections and vaccine protection, this study aimed to assess immune responses post cholera infection and vaccination. This was a comparative study consisting of 50 participants enrolled during a cholera outbreak in Zambia's Eastern Province and an additional 56 participants who received oral cholera vaccinations in Zambia's Central Province. Vibriocidal antibodies were plotted as geometric mean titres in the naturally infected and vaccinated individuals. A significant difference (p < 0.047) emerged when comparing naturally infected to fully vaccinated individuals (2 doses) on day 28 against V. cholerae Ogawa. Those who received two doses of the oral cholera vaccine had higher antibody titres than those who were naturally infected. Notably, the lowest titres occurred between 0-9 days post onset, contrasting with peak responses at 10-19 days. This study addresses a critical knowledge gap in understanding cholera immunity dynamics, emphasizing the potential superiority of vaccination-induced immune responses. We recommend post infection vaccination after 40 days for sustained immunity and prolonged protection, especially in cholera hotspots.


Asunto(s)
Anticuerpos Antibacterianos , Vacunas contra el Cólera , Cólera , Vacunación , Vibrio cholerae , Humanos , Vacunas contra el Cólera/inmunología , Vacunas contra el Cólera/administración & dosificación , Cólera/prevención & control , Cólera/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Zambia/epidemiología , Adulto , Masculino , Femenino , Adulto Joven , Vibrio cholerae/inmunología , Adolescente , Persona de Mediana Edad , Brotes de Enfermedades/prevención & control
5.
Vaccines (Basel) ; 12(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38675772

RESUMEN

Despite the successful introduction of oral cholera vaccines, Zambia continues to experience multiple, sporadic, and protracted cholera outbreaks in various parts of the country. While vaccines have been useful in staying the cholera outbreaks, the ideal window for re-vaccinating individuals resident in cholera hotspot areas remains unclear. Using a prospective cohort study design, 225 individuals were enrolled and re-vaccinated with two doses of Shanchol™, regardless of previous vaccination, and followed-up for 90 days. Bloods were collected at baseline before re-vaccination, at day 14 prior to second dosing, and subsequently on days 28, 60, and 90. Vibriocidal assay was performed on samples collected at all five time points. Our results showed that anti-LPS and vibriocidal antibody titers increased at day 14 after re-vaccination and decreased gradually at 28, 60, and 90 days across all the groups. Seroconversion rates were generally comparable in all treatment arms. We therefore conclude that vibriocidal antibody titers generated in response to re-vaccination still wane quickly, irrespective of previous vaccination status. However, despite the observed decline, the levels of vibriocidal antibodies remained elevated over baseline values across all groups, an important aspect for Zambia where there is no empirical evidence as to the ideal time for re-vaccination.

6.
J Infect ; 88(3): 106115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309308

RESUMEN

OBJECTIVES: Glycosylation motifs shape antibody structure, stability and antigen affinity and play an important role in antibody localization and function. Serum IgG glycosylation profiles are significantly altered in infectious diseases, including tuberculosis (TB), but have not been studied in the context of progression from latent to active TB. METHODS: We performed a longitudinal study of paired bulk IgG glycosylation and transcriptomic profiling in blood from individuals with active TB (ATB) or latent TB infection (LTBI) before and after treatment. RESULTS: We identified that a combination of two IgG1 glycosylation traits were sufficient to distinguish ATB from LTBI with high specificity and sensitivity, prior to, and after treatment. Importantly, these two features positively correlated with previously defined cellular and RNA signatures of ATB risk in LTBI, namely monocyte to lymphocyte ratio and the expression of interferon (IFN)-associated gene signature of progression (IFN-risk signature) in blood prior to treatment. Additional glycosylation features at higher prevalence in LTBI individuals with high expression of the IFN-risk signature prior to treatment included fucosylation on IgG1, IgG2 and IgG3. CONCLUSIONS: Together, our results demonstrate that bulk IgG glycosylation features could be useful in stratifying the risk of LTBI reactivation and progression to ATB.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Humanos , Glicosilación , Estudios Longitudinales , Inmunoglobulina G , Biomarcadores
7.
J Med Microbiol ; 72(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37929930

RESUMEN

Introduction. Intestinal helminths and microbiota share the same anatomical niche during infection and are likely to interact either directly or indirectly. Whether intestinal helminths employ bactericidal strategies that influence their microbial environment is not completely understood.Hypothesis. In the present study, the hypothesis that the adult hookworm Nippostrongylus brasiliensis produces molecules that impair bacterial growth in vitro, is tested.Aim. To investigate the in vitro bactericidal activity of Nippostrongylus brasiliensis against commensal and pathogenic bacteria.Methodology. The bactericidal effect of somatic extract and excretory-secretory products of adult Nippostrongylus brasiliensis on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae) bacteria was assessed using growth assays. Minimum inhibitory concentration and minimum bactericidal concentration assays were performed using excretory-secretory products released from the pathogen.Results. Broad-spectrum in vitro bactericidal activity in excretory-secretory products, but not somatic extract of adult Nippostrongylus brasiliensis was detected. The bactericidal activity of excretory-secretory products was concentration-dependent, maintained after heat treatment, and preserved after repeated freezing and thawing.Conclusion. The results of this study demonstrate that helminths such as Nippostrongylus brasiliensis release molecules via their excretory-secretory pathway that have broad-spectrum bactericidal activity. The mechanisms responsible for this bactericidal activity remain to be determined and further studies aimed at isolating and identifying active bactericidal molecules are needed.


Asunto(s)
Parasitosis Intestinales , Nippostrongylus , Animales
8.
J Infect ; 87(4): 328-335, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37543310

RESUMEN

The importance of salivary SARS-CoV-2 antibodies, following infection and vaccination, has not been fully established. 875 healthcare workers were sampled during the first wave in 2020 and 66 longitudinally in response to Pfizer BioNTech 162b2 vaccination. We measured SARS-CoV-2 total IgGAM and individual IgG, IgA and IgM antibodies. IgGAM seroprevalence was 39.9%; however, only 34.1% of seropositive individuals also had salivary antibodies. Infection generated serum IgG antibodies in 51.4% and IgA antibodies in 34.1% of individuals. In contrast, the salivary antibody responses were dominated by IgA (30.9% and 12% generating IgA and IgG antibodies, respectively). Post 2nd vaccination dose, in serum, 100% of infection naïve individuals had IgG and 82.8% had IgA responses; in saliva, 65.5% exhibited IgG and 55.2% IgA antibodies. Prior infection enhanced the vaccine antibody response in serum but no such difference was observed in saliva. Strong neutralisation responses were seen for serum 6 months post 2nd-vaccination dose (median 87.1%) compared to low neutralisation responses in saliva (median 1%). Intramuscular vaccination induces significant serum antibodies and to a lesser extent, salivary antibodies; however, salivary antibodies are typically non-neutralising. This study provides further evidence for the need of mucosal vaccines to elicit nasopharyngeal/oral protection. Although saliva is an attractive non-invasive sero-surveillance tool, due to distinct differences between systemic and oral antibody responses, it cannot be used as a proxy for serum antibody measurement.


Asunto(s)
COVID-19 , Saliva , Humanos , COVID-19/prevención & control , Estudios Seroepidemiológicos , SARS-CoV-2 , Vacunación , Inmunoglobulina A , Anticuerpos Antivirales , Inmunoglobulina G
9.
Front Immunol ; 14: 1170807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251384

RESUMEN

Helminth-induced eosinophils accumulate around the parasite at the site of infection, or in parasite-damaged tissues well after the helminth has left the site. The role of helminth-elicited eosinophils in mediating parasite control is complex. While they may contribute to direct parasite-killing and tissue repair, their involvement in long-term immunopathogenesis is a concern. In allergic Siglec-FhiCD101hi, eosinophils are associated with pathology. Research has not shown if equivalent subpopulations of eosinophils are a feature of helminth infection. In this study, we demonstrate that lung migration of rodent hookworm Nippostrongylus brasiliensis (Nb) results in a long-term expansion of distinct Siglec-FhiCD101hi eosinophil subpopulations. Nb-elevated eosinophil populations in the bone marrow and circulation did not present this phenotype. Siglec-FhiCD101hi lung eosinophils exhibited an activated morphology including nuclei hyper-segmentation and cytoplasm degranulation. Recruitment of ST2+ ILC2s and not CD4+ T cells to the lungs was associated with the expansion of Siglec-FhiCD101hi eosinophils. This data identifies a morphologically distinct and persistent subset of Siglec-FhiCD101hi lung eosinophils induced following Nb infection. These eosinophils may contribute to long-term pathology following helminth infection.


Asunto(s)
Eosinófilos , Infecciones por Uncinaria , Animales , Ratones , Ancylostomatoidea , Inmunidad Innata , Pulmón/parasitología , Linfocitos , Nippostrongylus , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
10.
PLoS Genet ; 19(4): e1010737, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37099600

RESUMEN

Diphtheria is a respiratory disease caused by Corynebacterium diphtheriae. While the toxin-based vaccine has helped control outbreaks of the disease since the mid-20th century there has been an increase in cases in recent years, including systemic infections caused by non-toxigenic C. diphtheriae strains. Here we describe the first study of gene essentiality in C. diphtheriae, providing the most-dense Transposon Directed Insertion Sequencing (TraDIS) library in the phylum Actinobacteriota. This high-density library has allowed the identification of conserved genes across the genus and phylum with essential function and enabled the elucidation of essential domains within the resulting proteins including those involved in cell envelope biogenesis. Validation of these data through protein mass spectrometry identified hypothetical and uncharacterized proteins in the proteome which are also represented in the vaccine. These data are an important benchmark and useful resource for the Corynebacterium, Mycobacterium, Nocardia and Rhodococcus research community. It enables the identification of novel antimicrobial and vaccine targets and provides a basis for future studies of Actinobacterial biology.


Asunto(s)
Corynebacterium diphtheriae , Difteria , Humanos , Corynebacterium diphtheriae/genética , Multiómica , Difteria/epidemiología , Difteria/microbiología , Brotes de Enfermedades , Biblioteca de Genes
11.
Front Immunol ; 14: 1139329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033932

RESUMEN

Introduction: Vaccination with Vi capsular polysaccharide (Vi-PS) or protein-Vi typhoid conjugate vaccine (TCV) can protect adults against Salmonella Typhi infections. TCVs offer better protection than Vi-PS in infants and may offer better protection in adults. Potential reasons for why TCV may be superior in adults are not fully understood. Methods and results: Here, we immunized wild-type (WT) mice and mice deficient in IgG or IgM with Vi-PS or TCVs (Vi conjugated to tetanus toxoid or CRM197) for up to seven months, with and without subsequent challenge with Vi-expressing Salmonella Typhimurium. Unexpectedly, IgM or IgG alone were similarly able to reduce bacterial burdens in tissues, and this was observed in response to conjugated or unconjugated Vi vaccines and was independent of antibody being of high affinity. Only in the longer-term after immunization (>5 months) were differences observed in tissue bacterial burdens of mice immunized with Vi-PS or TCV. These differences related to the maintenance of antibody responses at higher levels in mice boosted with TCV, with the rate of fall in IgG titres induced to Vi-PS being greater than for TCV. Discussion: Therefore, Vi-specific IgM or IgG are independently capable of protecting from infection and any superior protection from vaccination with TCV in adults may relate to responses being able to persist better rather than from differences in the antibody isotypes induced. These findings suggest that enhancing our understanding of how responses to vaccines are maintained may inform on how to maximize protection afforded by conjugate vaccines against encapsulated pathogens such as S. Typhi.


Asunto(s)
Fiebre Tifoidea , Vacunas Tifoides-Paratifoides , Animales , Ratones , Salmonella typhi , Vacunas Conjugadas , Fiebre Tifoidea/prevención & control , Polisacáridos Bacterianos , Inmunoglobulina G , Formación de Anticuerpos , Inmunoglobulina M
12.
Microbiol Spectr ; 11(3): e0359422, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036352

RESUMEN

The autotransporter protein secretion system has been used previously to target the secretion of heterologous proteins to the bacterial cell surface and the extracellular milieu at the laboratory scale. The platform is of particular interest for the production of "difficult" recombinant proteins that might cause toxic effects when produced intracellularly. One such protein is IrmA. IrmA is a vaccine candidate that is produced in inclusion bodies requiring refolding. Here, we describe the use and scale-up of the autotransporter system for the secretion of an industrially relevant protein (IrmA). A plasmid expressing IrmA was constructed such that the autotransporter platform could secrete IrmA into the culture supernatant fraction. The autotransporter platform was suitable for the production and purification of IrmA with comparable physical properties to the protein produced in the cytoplasm. The production of IrmA was translated to scale-up protein production conditions resulting in a yield of 29.3 mg/L of IrmA from the culture supernatant, which is consistent with yields of current industrial processes. IMPORTANCE Recombinant protein production is an essential component of the biotechnology sector. Here, we show that the autotransporter platform is a viable method for the recombinant production, secretion, and purification of a "difficult" to produce protein on an industrially relevant scale. Use of the autotransporter platform could reduce the number of downstream processing operations required, thus accelerating the development time and reducing costs for recombinant protein production.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Sistemas de Secreción Tipo V/genética , Sistemas de Secreción Tipo V/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Membrana Celular/metabolismo
13.
Clin Exp Immunol ; 213(2): 243-251, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37095599

RESUMEN

Post-acute cardiac sequelae, following SARS-CoV-2 infection, are well recognized as complications of COVID-19. We have previously shown the persistence of autoantibodies against antigens in skin, muscle, and heart in individuals following severe COVID-19; the most common staining on skin tissue displayed an inter-cellular cement pattern consistent with antibodies against desmosomal proteins. Desmosomes play a critical role in maintaining the structural integrity of tissues. For this reason, we analyzed desmosomal protein levels and the presence of anti-desmoglein (DSG) 1, 2, and 3 antibodies in acute and convalescent sera from patients with COVID-19 of differing clinical severity. We find increased levels of DSG2 protein in sera from acute COVID-19 patients. Furthermore, we find that DSG2 autoantibody levels are increased significantly in convalescent sera following severe COVID-19 but not in hospitalized patients recovering from influenza infection or healthy controls. Levels of autoantibody in sera from patients with severe COVID-19 were comparable to levels in patients with non-COVID-19-associated cardiac disease, potentially identifying DSG2 autoantibodies as a novel biomarker for cardiac damage. To determine if there was any association between severe COVID-19 and DSG2, we stained post-mortem cardiac tissue from patients who died from COVID-19 infection. This confirmed DSG2 protein within the intercalated discs and disruption of the intercalated disc between cardiomyocytes in patients who died from COVID-19. Our results reveal the potential for DSG2 protein and autoimmunity to DSG2 to contribute to unexpected pathologies associated with COVID-19 infection.


Asunto(s)
Autoanticuerpos , COVID-19 , Humanos , Autoanticuerpos/metabolismo , Sueroterapia para COVID-19 , SARS-CoV-2 , Miocardio
14.
Adv Microb Physiol ; 82: 155-204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36948654

RESUMEN

Type I secretion systems (T1SS) are versatile molecular machines for protein transport across the Gram-negative cell envelope. The archetypal Type I system mediates secretion of the Escherichia coli hemolysin, HlyA. This system has remained the pre-eminent model of T1SS research since its discovery. The classic description of a T1SS is composed of three proteins: an inner membrane ABC transporter, a periplasmic adaptor protein and an outer membrane factor. According to this model, these components assemble to form a continuous channel across the cell envelope, an unfolded substrate molecule is then transported in a one-step mechanism, directly from the cytosol to the extracellular milieu. However, this model does not encapsulate the diversity of T1SS that have been characterized to date. In this review, we provide an updated definition of a T1SS, and propose the subdivision of this system into five subgroups. These subgroups are categorized as T1SSa for RTX proteins, T1SSb for non-RTX Ca2+-binding proteins, T1SSc for non-RTX proteins, T1SSd for class II microcins, and T1SSe for lipoprotein secretion. Although often overlooked in the literature, these alternative mechanisms of Type I protein secretion offer many avenues for biotechnological discovery and application.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transporte de Proteínas , Proteínas de Transporte de Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Sistemas de Secreción Tipo I/genética , Sistemas de Secreción Tipo I/química , Sistemas de Secreción Tipo I/metabolismo , Proteínas Bacterianas/metabolismo
15.
iScience ; 26(4): 106310, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950118

RESUMEN

Germinal centers (GCs) are sites where plasma and memory B cells form to generate high-affinity, Ig class-switched antibodies. Specialized stromal cells called follicular dendritic cells (FDCs) are essential for GC formation. During systemic Salmonella Typhimurium (STm) infection GCs are absent, whereas extensive extrafollicular and switched antibody responses are maintained. The mechanisms that underpin the absence of GC formation are incompletely understood. Here, we demonstrate that STm induces a reversible disruption of niches within the splenic microenvironment, including the T and B cell compartments and the marginal zone. Alongside these effects after infection, mature FDC networks are strikingly absent, whereas immature FDC precursors, including marginal sinus pre-FDCs (MadCAM-1+) and perivascular pre-FDCs (PDGFRß+) are enriched. As normal FDC networks re-establish, extensive GCs become detectable throughout the spleen. Therefore, the reorganization of FDC networks and the loss of GC responses are key, parallel features of systemic STm infections.

16.
Front Immunol ; 13: 968981, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225927

RESUMEN

Background: The systemic inflammatory response post-SARS-CoV-2 infection increases pro-inflammatory cytokine production, multi-organ damage, and mortality rates. Mast cells (MC) modulate thrombo-inflammatory disease progression (e.g., deep vein thrombosis) and the inflammatory response post-infection. Objective: To enhance our understanding of the contribution of MC and their proteases in SARS-CoV-2 infection and the pathogenesis of the disease, which might help to identify novel therapeutic targets. Methods: MC proteases chymase (CMA1), carboxypeptidase A3 (CPA3), and tryptase beta 2 (TPSB2), as well as cytokine levels, were measured in the serum of 60 patients with SARS-CoV-2 infection (30 moderate and 30 severe; severity of the disease assessed by chest CT) and 17 healthy controls by ELISA. MC number and degranulation were quantified by immunofluorescent staining for tryptase in lung autopsies of patients deceased from either SARS-CoV-2 infection or unrelated reasons (control). Immortalized human FcεR1+c-Kit+ LUVA MC were infected with SARS-CoV-2, or treated with its viral proteins, to assess direct MC activation by flow cytometry. Results: The levels of all three proteases were increased in the serum of patients with COVID-19, and strongly correlated with clinical severity. The density of degranulated MC in COVID-19 lung autopsies was increased compared to control lungs. The total number of released granules and the number of granules per each MC were elevated and positively correlated with von Willebrand factor levels in the lung. SARS-CoV-2 or its viral proteins spike and nucleocapsid did not induce activation or degranulation of LUVA MC in vitro. Conclusion: In this study, we demonstrate that SARS-CoV-2 is strongly associated with activation of MC, which likely occurs indirectly, driven by the inflammatory response. The results suggest that plasma MC protease levels could predict the disease course, and that severe COVID-19 patients might benefit from including MC-stabilizing drugs in the treatment scheme.


Asunto(s)
COVID-19 , Carboxipeptidasas , Quimasas/metabolismo , Citocinas , Humanos , Mastocitos/metabolismo , SARS-CoV-2 , Triptasas/metabolismo , Proteínas Virales , Factor de von Willebrand
17.
Front Immunol ; 13: 838780, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860286

RESUMEN

Antibodies specific for the spike glycoprotein (S) and nucleocapsid (N) SARS-CoV-2 proteins are typically present during severe COVID-19, and induced to S after vaccination. The binding of viral antigens by antibody can initiate the classical complement pathway. Since complement could play pathological or protective roles at distinct times during SARS-CoV-2 infection we determined levels of antibody-dependent complement activation along the complement cascade. Here, we used an ELISA assay to assess complement protein binding (C1q) and the deposition of C4b, C3b, and C5b to S and N antigens in the presence of antibodies to SARS-CoV-2 from different test groups: non-infected, single and double vaccinees, non-hospitalised convalescent (NHC) COVID-19 patients and convalescent hospitalised (ITU-CONV) COVID-19 patients. C1q binding correlates strongly with antibody responses, especially IgG1 levels. However, detection of downstream complement components, C4b, C3b and C5b shows some variability associated with the subject group from whom the sera were obtained. In the ITU-CONV, detection of C3b-C5b to S was observed consistently, but this was not the case in the NHC group. This is in contrast to responses to N, where median levels of complement deposition did not differ between the NHC and ITU-CONV groups. Moreover, for S but not N, downstream complement components were only detected in sera with higher IgG1 levels. Therefore, the classical pathway is activated by antibodies to multiple SARS-CoV-2 antigens, but the downstream effects of this activation may differ depending the disease status of the subject and on the specific antigen targeted.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Activación de Complemento , Complemento C1q , Humanos , Inmunoglobulina G , Nucleoproteínas , Glicoproteína de la Espiga del Coronavirus , Vacunación
18.
Microbiol Spectr ; 10(4): e0083322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35856675

RESUMEN

In recent years the availability of genome sequence information has grown logarithmically resulting in the identification of a plethora of uncharacterized genes. To address this gap in functional annotation, many high-throughput screens have been devised to uncover novel gene functions. Gene-replacement libraries are one such tool that can be screened in a high-throughput way to link genotype and phenotype and are key community resources. However, for a phenotype to be attributed to a specific gene, there needs to be confidence in the genotype. Construction of large libraries can be laborious and occasionally errors will arise. Here, we present a rapid and accurate method for the validation of any ordered library where a gene has been replaced or disrupted by a uniform linear insertion (LI). We applied our method (LI-detector) to the well-known Keio library of Escherichia coli gene-deletion mutants. Our method identified 3,718 constructed mutants out of a total of 3,728 confirmed isolates, with a success rate of 99.7% for identifying the correct kanamycin cassette position. This data set provides a benchmark for the purity of the Keio mutants and a screening method for mapping the position of any linear insertion, such as an antibiotic resistance cassette in any ordered library. IMPORTANCE The construction of ordered gene replacement libraries requires significant investment of time and resources to create a valuable community resource. During construction, technical errors may result in a limited number of incorrect mutants being made. Such mutants may confound the output of subsequent experiments. Here, using the remarkable E. coli Keio knockout library, we describe a method to rapidly validate the construction of every mutant.


Asunto(s)
Elementos Transponibles de ADN , Infecciones por Escherichia coli , Escherichia coli/genética , Biblioteca de Genes , Humanos , Mutagénesis Insercional
19.
Cardiovasc Res ; 118(15): 3085-3096, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-35709328

RESUMEN

AIMS: Thrombotic complications and vasculopathy have been extensively associated with severe COVID-19 infection; however, the mechanisms inducing endotheliitis and the disruption of endothelial integrity in the microcirculation are poorly understood. We hypothesized that within the vessel wall, pericytes preferentially take up viral particles and mediate the subsequent loss of vascular integrity. METHODS AND RESULTS: Immunofluorescence of post-mortem patient sections was used to assess pathophysiological aspects of COVID-19 infection. The effects of COVID-19 on the microvasculature were assessed using a vascular organoid model exposed to live viral particles or recombinant viral antigens. We find increased expression of the viral entry receptor angiotensin-converting enzyme 2 on pericytes when compared to vascular endothelium and a reduction in the expression of the junctional protein CD144, as well as increased cell death, upon treatment with both live virus and/or viral antigens. We observe a dysregulation of genes implicated in vascular permeability, including Notch receptor 3, angiopoietin-2, and TEK. Activation of vascular organoids with interleukin-1ß did not have an additive effect on vascular permeability. Spike antigen was detected in some patients' lung pericytes, which was associated with a decrease in CD144 expression and increased platelet recruitment and von Willebrand factor (VWF) deposition in the capillaries of these patients, with thrombi in large vessels rich in VWF and fibrin. CONCLUSION: Together, our data indicate that direct viral exposure to the microvasculature modelled by organoid infection and viral antigen treatment results in pericyte infection, detachment, damage, and cell death, disrupting pericyte-endothelial cell crosstalk and increasing microvascular endothelial permeability, which can promote thrombotic and bleeding complications in the microcirculation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antígenos Virales
20.
Mucosal Immunol ; 15(4): 668-682, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35347229

RESUMEN

Krüppel-like factor 2 (KLF2) is a potent regulator of lymphocyte differentiation, activation and migration. However, its functional role in adaptive and humoral immunity remains elusive. Therefore, by using mice with a B cell-specific deletion of KLF2, we investigated plasma cell differentiation and antibody responses. We revealed that the deletion of KLF2 resulted in perturbed IgA plasma cell compartmentalization, characterized by the absence of IgA plasma cells in the bone marrow, their reductions in the spleen, the blood and the lamina propria of the colon and the small intestine, concomitant with their accumulation and retention in mesenteric lymph nodes and Peyer's patches. Most intriguingly, secretory IgA in the intestinal lumen was almost absent, dimeric serum IgA was drastically reduced and antigen-specific IgA responses to soluble Salmonella flagellin were blunted in KLF2-deficient mice. Perturbance of IgA plasma cell localization was caused by deregulation of CCR9, Integrin chains αM, α4, ß7, and sphingosine-1-phosphate receptors. Hence, KLF2 not only orchestrates the localization of IgA plasma cells by fine-tuning chemokine receptors and adhesion molecules but also controls IgA responses to Salmonella flagellin.


Asunto(s)
Inmunoglobulina A , Factores de Transcripción de Tipo Kruppel , Ganglios Linfáticos Agregados , Células Plasmáticas , Animales , Flagelina , Inmunoglobulina A/metabolismo , Mucosa Intestinal , Factores de Transcripción de Tipo Kruppel/genética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA