Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Mol Immunol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942797

RESUMEN

Recent studies reveal a critical role of tumor cell-released extracellular vesicles (EVs) in pancreatic cancer (PC) progression. However, driver genes that direct EV function, the EV-recipient cells, and their cellular response to EV uptake remain to be identified. Therefore, we studied the role of Bcl-2-associated-anthanogene 6 (BAG6), a regulator of EV biogenesis for cancer progression. We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment (TME) changes in mouse models for pancreatic ductal adenocarcinoma (PDAC) in a Bag6 pro- or deficient background. In vivo data were validated using mouse and human organoids and patient samples. Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release. Mechanistically, this was attributed to mast cell (MC) activation via EV-associated IL33. Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration. Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73. Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance. The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC. Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth. MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration. EVs derived from BAG6-deficient pancreatic cancer cells induce MC activation via IL33/Il1rl1. The secretome of activated MCs induces tumor proliferation and changes in the TME, particularly shifting fibroblasts into an inflammatory cancer-associated fibroblast (iCAF) phenotype. Blocking EVs or depleting MCs restricts tumor growth.

2.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35216088

RESUMEN

The metalloprotease-disintegrin ADAM8 is critically involved in the progression of pancreatic cancer. Under malignant conditions, ADAM8 is highly expressed and could play an important role in cell-cell communication as expression has been observed in tumor and immune cells of the tumor microenvironment (TME) such as macrophages. To analyze the potential role of ADAM8 in the TME, ADAM8 knockout PDAC tumor cells were generated, and their release of extracellular vesicles (EVs) was analyzed. In EVs, ADAM8 is present as an active protease and associated with lipocalin 2 (LCN2) and matrix metalloprotease 9 (MMP-9) in an ADAM8-dependent manner, as ADAM8 KO cells show a lower abundance of LCN2 and MMP-9. Sorting of ADAM8 occurs independent of TSG101, even though ADAM8 contains the recognition motif PTAP for the ESCRTI protein TSG101 within the cytoplasmic domain (CD). When tumor cells were co-cultured with macrophages (THP-1 cells), expression of LCN2 and MMP-9 in ADAM8 KO cells was induced, suggesting that macrophage signaling can overcome ADAM8-dependent intracellular signaling in PDAC cells. In co-culture with macrophages, regulation of MMP-9 is independent of the M1/M2 polarization state, whereas LCN2 expression is preferentially affected by M1-like macrophages. From these data, we conclude that ADAM8 has a systemic effect in the tumor microenvironment, and its expression in distinct cell types has to be considered for ADAM8 targeting in tumors.


Asunto(s)
Proteínas ADAM/metabolismo , Lipocalina 2/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Vesículas Extracelulares/metabolismo , Humanos , Macrófagos/metabolismo , Neoplasias Pancreáticas/metabolismo , Células THP-1
3.
Theranostics ; 9(21): 6047-6062, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534536

RESUMEN

Extracellular vesicles released by tumor cells contribute to the reprogramming of the tumor microenvironment and interfere with hallmarks of cancer including metastasis. Notably, melanoma cell-derived EVs are able to establish a pre-metastatic niche in distant organs, or on the contrary, exert anti-tumor activity. However, molecular insights into how vesicles are selectively packaged with cargo defining their specific functions remain elusive. Methods: Here, we investigated the role of the chaperone Bcl2-associated anthogene 6 (BAG6, synonym Bat3) for the formation of pro- and anti-tumor EVs. EVs collected from wildtype cells and BAG6-deficient cells were characterized by mass spectrometry and RNAseq. Their tumorigenic potential was analyzed using the B-16V transplantation mouse melanoma model. Results: We demonstrate that EVs from B-16V cells inhibit lung metastasis associated with the mobilization of Ly6Clow patrolling monocytes. The formation of these anti-tumor-EVs was dependent on acetylation of p53 by the BAG6/CBP/p300-acetylase complex, followed by recruitment of components of the endosomal sorting complexes required for transport (ESCRT) via a P(S/T)AP double motif of BAG6. Genetic ablation of BAG6 and disruption of this pathway led to the release of a distinct EV subtype, which failed to suppress metastasis but recruited tumor-promoting neutrophils to the pre-metastatic niche. Conclusion: We conclude that the BAG6/CBP/p300-p53 axis is a key pathway directing EV cargo loading and thus a potential novel microenvironmental therapeutic target.


Asunto(s)
Exosomas/inmunología , Melanoma/inmunología , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Transformación Celular Neoplásica , Proteína p300 Asociada a E1A/metabolismo , Vesículas Extracelulares/metabolismo , Células HEK293 , Humanos , Melanoma/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Microambiente Tumoral
4.
Front Immunol ; 9: 1358, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967610

RESUMEN

Secretion of extracellular vesicles (EVs) is a ubiquitous mechanism of intercellular communication based on the exchange of effector molecules, such as growth factors, cytokines, and nucleic acids. Recent studies identified tumor-derived EVs as central players in tumor progression and the establishment of the tumor microenvironment (TME). However, studies on EVs from classical Hodgkin lymphoma (cHL) are limited. The growth of malignant Hodgkin and Reed-Sternberg (HRS) cells depends on the TME, which is actively shaped by a complex interaction of HRS cells and stromal cells, such as fibroblasts and immune cells. HRS cells secrete cytokines and angiogenic factors thus recruiting and inducing the proliferation of surrounding cells to finally deploy an immunosuppressive TME. In this study, we aimed to investigate the role of tumor cell-derived EVs within this complex scenario. We observed that EVs collected from Hodgkin lymphoma (HL) cells were internalized by fibroblasts and triggered their migration capacity. EV-treated fibroblasts were characterized by an inflammatory phenotype and an upregulation of alpha-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts. Analysis of the secretome of EV-treated fibroblast revealed an enhanced release of pro-inflammatory cytokines (e.g., IL-1α, IL-6, and TNF-α), growth factors (G-CSF and GM-CSF), and pro-angiogenic factors such as VEGF. These soluble factors are known to promote HL progression. In line, ingenuity pathway analysis identified inflammatory pathways, including TNF-α/NF-κB-signaling, as key factors directing the EV-dependent phenotype changes in fibroblasts. Confirming the in vitro data, we demonstrated that EVs promote α-SMA expression in fibroblasts and the expression of proangiogenic factors using a xenograft HL model. Collectively, we demonstrate that HL EVs alter the phenotype of fibroblasts to support tumor growth, and thus shed light on the role of EVs for the establishment of the tumor-promoting TME in HL.

5.
Proc Natl Acad Sci U S A ; 115(17): E4061-E4070, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632181

RESUMEN

Colorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression. To elucidate its function in CRC, PARP-1 deficient (PARP-1-/-) and wild-type animals (WT) were subjected to azoxymethane (AOM)/ dextran sodium sulfate (DSS)-induced colorectal carcinogenesis. Miniendoscopy showed significantly more tumors in WT than in PARP-1-/- mice. Although the lack of PARP-1 moderately increased DNA damage, both genotypes exhibited comparable levels of AOM-induced autophagy and cell death. Interestingly, miniendoscopy revealed a higher AOM/DSS-triggered intestinal inflammation in WT animals, which was associated with increased levels of innate immune cells and proinflammatory cytokines. Tumors in WT animals were more aggressive, showing higher levels of STAT3 activation and cyclin D1 up-regulation. PARP-1-/- animals were then crossed with O6-methylguanine-DNA methyltransferase (MGMT)-deficient animals hypersensitive to AOM. Intriguingly, PARP-1-/-/MGMT-/- double knockout (DKO) mice developed more, but much smaller tumors than MGMT-/- animals. In contrast to MGMT-deficient mice, DKO animals showed strongly reduced AOM-dependent colonic cell death despite similar O6-methylguanine levels. Studies with PARP-1-/- cells provided evidence for increased alkylation-induced DNA strand break formation when MGMT was inhibited, suggesting a role of PARP-1 in the response to O6-methylguanine adducts. Our findings reveal PARP-1 as a double-edged sword in colorectal carcinogenesis, which suppresses tumor initiation following DNA alkylation in a MGMT-dependent manner, but promotes inflammation-driven tumor progression.


Asunto(s)
Neoplasias Colorrectales/enzimología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/prevención & control , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Ratones , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteínas Supresoras de Tumor/genética
6.
Philos Trans R Soc Lond B Biol Sci ; 373(1737)2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158311

RESUMEN

Extracellular vesicles (EVs) are important players of intercellular signalling mechanisms, including communication with and among immune cells. EVs can affect the surrounding tissue as well as peripheral cells. Recently, EVs have been identified to be involved in the aetiology of several diseases, including cancer. Tumour cell-released EVs or exosomes have been shown to promote a tumour-supporting environment in non-malignant tissue and, thus, benefit metastasis. The underlying mechanisms are numerous: loss of antigen expression, direct suppression of immune effector cells, exchange of nucleic acids, alteration of the recipient cells' transcription and direct suppression of immune cells. Consequently, tumour cells can subvert the host's immune detection as well as suppress the immune system. On the contrary, recent studies reported the existence of EVs able to activate immune cells, thus promoting the tumour-directed immune response. In this article, the immunosuppressive capabilities of EVs, on the one hand, and their potential use in immunoactivation and therapeutic potential, on the other hand, are discussed.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.


Asunto(s)
Vesículas Extracelulares/inmunología , Vigilancia Inmunológica , Neoplasias/fisiopatología , Microambiente Tumoral/inmunología
7.
Cancer Lett ; 371(1): 12-9, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26604131

RESUMEN

The endogenous disulfide α-lipoic acid (LA) is an essential mitochondrial co-factor. In addition, LA and its reduced counterpart dihydro lipoic acid form a potent redox couple with antioxidative functions, for which it is used as dietary supplement and therapeutic. Recently, it has gained attention due to its cytotoxic effects in cancer cells, which is the key aspect of this review. We initially recapitulate the dietary occurrence, gastrointestinal absorption and pharmacokinetics of LA, illustrating its diverse antioxidative mechanisms. We then focus on its mode of action in cancer cells, in which it triggers primarily the mitochondrial pathway of apoptosis, whereas non-transformed primary cells are hardly affected. Furthermore, LA impairs oncogenic signaling and displays anti-metastatic potential. Novel LA derivatives such as CPI-613, which target mitochondrial energy metabolism, are described and recent pre-clinical studies are presented, which demonstrate that LA and its derivatives exert antitumor activity in vivo. Finally, we highlight clinical studies currently performed with the LA analog CPI-613. In summary, LA and its derivatives are promising candidates to complement the arsenal of established anticancer drugs due to their mitochondria-targeted mode of action and non-genotoxic properties.


Asunto(s)
Antineoplásicos/uso terapéutico , Caprilatos/uso terapéutico , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Sulfuros/uso terapéutico , Ácido Tióctico/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Caprilatos/química , Caprilatos/farmacocinética , Descubrimiento de Drogas , Metabolismo Energético/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Estructura Molecular , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Sulfuros/química , Sulfuros/farmacocinética , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Ácido Tióctico/farmacocinética
8.
Carcinogenesis ; 36(10): 1235-44, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26243310

RESUMEN

Epidemiological studies indicate that N-nitroso compounds (NOC) are causally linked to colorectal cancer (CRC). NOC induce DNA alkylations, including O (6)-methylguanine (O (6)-MeG) and N-methylated purines, which are repaired by O (6)-MeG-DNA methyltransferase (MGMT) and N-alkyladenine-DNA glycosylase (AAG)-initiated base excision repair, respectively. In view of recent evidence of nonlinear mutagenicity for NOC-like compounds, the question arises as to the existence of threshold doses in CRC formation. Here, we set out to determine the impact of DNA repair on the dose-response of alkylation-induced CRC. DNA repair proficient (WT) and deficient (Mgmt (-/-), Aag (-/-) and Mgmt (-/-)/Aag (-/-)) mice were treated with azoxymethane (AOM) and dextran sodium sulfate to trigger CRC. Tumors were quantified by non-invasive mini-endoscopy. A non-linear increase in CRC formation was observed in WT and Aag (-/-) mice. In contrast, a linear dose-dependent increase in tumor frequency was found in Mgmt (-/-) and Mgmt (-/-)/Aag (-/-) mice. The data were corroborated by hockey stick modeling, yielding similar carcinogenic thresholds for WT and Aag (-/-) and no threshold for MGMT lacking mice. O (6)-MeG levels and depletion of MGMT correlated well with the observed dose-response in CRC formation. AOM induced dose-dependently DNA double-strand breaks in colon crypts including Lgr5-positive colon stem cells, which coincided with ATR-Chk1-p53 signaling. Intriguingly, Mgmt (-/-) mice displayed significantly enhanced levels of γ-H2AX, suggesting the usefulness of γ-H2AX as an early genotoxicity marker in the colorectum. This study demonstrates for the first time a non-linear dose-response for alkylation-induced colorectal carcinogenesis and reveals DNA repair by MGMT, but not AAG, as a key node in determining a carcinogenic threshold.


Asunto(s)
Neoplasias Colorrectales/genética , ADN Glicosilasas/genética , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Proteínas Supresoras de Tumor/genética , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/patología , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Compuestos Nitrosos/toxicidad
9.
Carcinogenesis ; 36(8): 817-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25998848

RESUMEN

Alkylating agents are present in food and tobacco smoke, but are also used in cancer chemotherapy, inducing the DNA lesion O (6)-methylguanine. This critical adduct is repaired by O (6)-methylguanine-DNA methyltransferase (MGMT), resulting in MGMT inactivation and degradation. In the present study, we analyzed the effects of the natural disulfide compound lipoic acid (LA) on MGMT in vitro and in colorectal cancer cells. We show that LA, but not its reduced form dihydrolipoic acid, potently inhibits the activity of recombinant MGMT by interfering with its catalytic Cys-145 residue, which was partially reversible by N-acetyl cysteine. Incubation of HCT116 colorectal cancer cells with LA altered their glutathione pool and caused a decline in MGMT activity. This was mirrored by LA-induced depletion of MGMT protein, which was not attributable to changes in MGMT messenger RNA levels. Loss of MGMT protein coincided with LA-induced autophagy, a process resulting in lysosomal degradation of proteins, including presumably MGMT. LA-stimulated autophagy in a p53-independent manner as revealed by the response of isogenic HCT116 cell lines. Knockdown of the crucial autophagy component beclin-1 and chemical inhibitors blocked LA-induced autophagy, but did not abrogate LA-triggered MGMT degradation. Concomitant with MGMT depletion, LA pretreatment resulted in enhanced O (6)-methylguanine levels in DNA. It also increased the cytotoxicity of the alkylating anticancer drug temozolomide in temozolomide-resistant colorectal cancer cells. Taken together, our study showed that the natural compound LA inhibits MGMT and induces autophagy. Furthermore, LA enhanced the cytotoxic effects of temozolomide, which makes it a candidate for a supplement in cancer therapy.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Ácido Tióctico/farmacología , Proteínas Supresoras de Tumor/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Cisteína/metabolismo , Metilasas de Modificación del ADN/antagonistas & inhibidores , Metilasas de Modificación del ADN/genética , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/genética , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Glutatión/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Células HCT116/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos BALB C , Terapia Molecular Dirigida , Temozolomida , Ácido Tióctico/análogos & derivados , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Arch Toxicol ; 89(10): 1829-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25526924

RESUMEN

Alpha-lipoic acid (LA), which plays a pivotal role in mitochondrial energy metabolism, is an endogenous dithiol compound with an array of antioxidative functions. It has been shown that LA triggers cell death in tumor cell lines, whereas non-transformed cells are hardly affected. In the present study, we analyzed the cytotoxicity of LA on colorectal cancer (CRC) cells differing in their p53 status and investigated a putative synergistic effect with the anticancer drug 5-fluorouracil (5-FU). We show that LA induces a dose-dependent decrease in cell viability, which was independent of the p53 status as attested in isogenic p53-proficient and p53-deficient cell lines. This effect was largely attributable to cell death induction as revealed by Annexin-V/PI staining. LA-treated HCT116 cells underwent caspase-dependent and caspase-independent cell death, which was blocked by the pan-caspase inhibitor zVAD and the RIP-kinase inhibitor Necrostatin-1, respectively. In CaCO-2 and HT29 cells, LA induced caspase-dependent cell demise via activation of caspase-9, caspase-3 and caspase-7 with subsequent PARP-1 cleavage as demonstrated by immunoblot analysis, activity assays and pan-caspase inhibition. Interestingly, LA treatment did neither activate p53 nor induced genotoxic effects as shown by lack of DNA strand breaks and phosphorylation of histone 2AX. Finally, we provide evidence that LA increases the cytotoxic effect induced by the anticancer drug 5-FU as revealed by significantly enhanced cell death rates in HCT116 and CaCO-2 cells. Collectively, these findings demonstrate that LA induces CRC cell death independent of their p53 status and potentiates the cytotoxicity of 5-FU without causing DNA damage on its own, which makes it a candidate for tumor therapy.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Fluorouracilo/farmacología , Ácido Tióctico/farmacología , Antimetabolitos Antineoplásicos/administración & dosificación , Células CACO-2 , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Fluorouracilo/administración & dosificación , Células HCT116 , Humanos , Proteína p53 Supresora de Tumor/metabolismo
11.
Arch Toxicol ; 89(5): 797-805, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24912782

RESUMEN

The natural compound 1,8-cineol, also known as eucalyptol, is a major constituent of eucalyptus oil. This epoxy-monoterpene is used as flavor and fragrance in consumer goods as well as medical therapies. Due to its anti-inflammatory properties, 1,8-cineol is also applied to treat upper and lower airway diseases. Despite its widespread use, only little is known about the genotoxicity of 1,8-cineol in mammalian cells. This study investigates the genotoxicity and cytotoxicity of 1,8-cineol in human and hamster cells. First, we observed a significant and concentration-dependent increase in oxidative DNA damage in human colon cancer cells, as detected by the Formamidopyrimidine-DNA glycosylase (Fpg)-modified alkaline comet assay. Pre-treatment of cells with the antioxidant N-acetylcysteine prevented the formation of Fpg-sensitive sites after 1,8-cineol treatment, supporting the notion that 1,8-cineol induces oxidative DNA damage. In the dose range of DNA damage induction, 1,8-cineol did neither reduce the viability of colon cancer cells nor affected their cell cycle distribution, suggesting that cells tolerate 1,8-cineol-induced oxidative DNA damage by engaging DNA repair. To test this hypothesis, hamster cell lines with defects in BRCA2 and Rad51, which are essentials players of homologous recombination (HR)-mediated repair, were treated with 1,8-cineol. The monoterpene induced oxidative DNA damage and subsequent DNA double-strand breaks in the hamster cell lines tested. Intriguingly, we detected a significant concentration-dependent decrease in viability of the HR-defective cells, whereas the corresponding wild-type cell lines with functional HR were not affected. Based on these findings, we conclude that 1,8-cineol is weakly genotoxic, inducing primarily oxidative DNA damage, which is most likely tolerated in DNA repair proficient cells without resulting in cell cycle arrest and cell death. However, cells with deficiency in HR were compromised after 1,8-cineol treatment, suggesting a protective role of HR in response to high doses of 1,8-cineol.


Asunto(s)
Ciclohexanoles/toxicidad , Daño del ADN/efectos de los fármacos , Monoterpenos/toxicidad , Animales , Línea Celular/química , Ensayo Cometa , Cricetinae , Electroforesis en Gel de Poliacrilamida , Eucaliptol , Eucalyptus , Células HCT116/química , Células HCT116/efectos de los fármacos , Humanos , Immunoblotting , Estrés Oxidativo/efectos de los fármacos , Aceites de Plantas/toxicidad , Especies Reactivas de Oxígeno/análisis
12.
DNA Repair (Amst) ; 18: 31-43, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24680221

RESUMEN

Cytolethal distending toxin (CDT) is a unique genotoxin produced by several pathogenic bacteria. The tripartite protein toxin is internalized into mammalian cells via endocytosis followed by retrograde transport to the ER. Upon translocation into the nucleus, CDT catalyzes the formation of DNA double-strand breaks (DSBs) due to its intrinsic endonuclease activity. In the present study, we compared the DNA damage response (DDR) in human fibroblasts triggered by recombinant CDT to that of ionizing radiation (IR), a well-known DSB inducer. Furthermore, we dissected the pathways involved in the detection and repair of CDT-induced DNA lesions. qRT-PCR array-based mRNA and western blot analyses showed a partial overlap in the DDR pattern elicited by CDT and IR, with strong activation of both the ATM-Chk2 and the ATR-Chk1 axis. In line with its in vitro DNase I-like activity on plasmid DNA, neutral and alkaline Comet assay revealed predominant induction of DSBs in CDT-treated fibroblasts, whereas irradiation of cells generated higher amounts of SSBs and alkali-labile sites. Using confocal microscopy, the dynamics of the DSB surrogate marker γ-H2AX was monitored after pulse treatment with CDT or IR. In contrast to the fast induction and disappearance of γ-H2AX-foci observed in irradiated cells, the number of γ-H2AX-foci induced by CDT were formed with a delay and persisted. 53BP1 foci were also generated following CDT treatment and co-localized with γ-H2AX foci. We further demonstrated that ATM-deficient cells are very sensitive to CDT-induced DNA damage as reflected by increased cell death rates with concomitant cleavage of caspase-3 and PARP-1. Finally, we provided novel evidence that both homologous recombination (HR) and non-homologous end joining (NHEJ) protect against CDT-elicited DSBs. In conclusion, the findings suggest that CDT functions as a radiomimetic agent and, therefore, is an attractive tool for selectively inducing persistent levels of DSBs and unveiling the associated cellular responses.


Asunto(s)
Toxinas Bacterianas/farmacología , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2/metabolismo , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Microscopía Confocal , Proteínas Quinasas/metabolismo , Radiación Ionizante , Proteínas Recombinantes/farmacología , Recombinación Genética , Tiempo
13.
FASEB J ; 27(6): 2293-300, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23444428

RESUMEN

The transition from unicellular to multicellular life, which occurred several times during evolution, requires tight interaction and communication of neighboring cells. The multicellular cyanobacterium Nostoc punctiforme ATCC 29133 forms filaments of hundreds of interacting cells exchanging metabolites and signal molecules and is able to differentiate specialized cells in response to environmental stimuli. Mutation of cell wall amidase AmiC2 leads to a severe phenotype with formation of aberrant septa in the distorted filaments, which completely lack cell communication and potential for cell differentiation. Here we demonstrate the function of the amidase AmiC2 in formation of cell-joining structures. The AmiC2 protein localizes to the young septum between cells and shows bona fide amidase activity in vivo and in vitro. Vancomycin staining identified the overall septum morphology in living cells. By electron microscopy of isolated peptidoglycan sacculi, the submicroscopic structure of the cell junctions could be visualized, revealing a novel function for a cell wall amidase: AmiC2 drills holes into the cross-walls, forming an array of ~155 nanopores with a diameter of ~20 nm each. These nanopores seem to constitute a framework for cell-joining proteins, penetrating the cell wall. The entire array of junctional nanopores appears as a novel bacterial organelle, establishing multicellularity in a filamentous prokaryote.


Asunto(s)
Interacciones Microbianas/fisiología , Nostoc/citología , Nostoc/fisiología , Amidohidrolasas/genética , Amidohidrolasas/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Pared Celular/enzimología , Pared Celular/ultraestructura , Genes Bacterianos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Microbianas/genética , Microscopía Electrónica de Transmisión , Mutación , Nanoporos/ultraestructura , Nostoc/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA