RESUMEN
BACKGROUND: Since late 2019, the lives of people across the globe have been disrupted by COVID-19. Millions of people have become infected with the disease, while billions of people have been continually asked or required by local and national governments to change their behavioral patterns. Previous research on the COVID-19 pandemic suggests that it is associated with large-scale behavioral and mental health changes; however, few studies have been able to track these changes with frequent, near real-time sampling or compare these changes to previous years of data for the same individuals. OBJECTIVE: By combining mobile phone sensing and self-reported mental health data in a cohort of college-aged students enrolled in a longitudinal study, we seek to understand the behavioral and mental health impacts associated with the COVID-19 pandemic, measured by interest across the United States in the search terms coronavirus and COVID fatigue. METHODS: Behaviors such as the number of locations visited, distance traveled, duration of phone use, number of phone unlocks, sleep duration, and sedentary time were measured using the StudentLife mobile smartphone sensing app. Depression and anxiety were assessed using weekly self-reported ecological momentary assessments, including the Patient Health Questionnaire-4. The participants were 217 undergraduate students. Differences in behaviors and self-reported mental health collected during the Spring 2020 term, as compared to previous terms in the same cohort, were modeled using mixed linear models. RESULTS: Linear mixed models demonstrated differences in phone use, sleep, sedentary time and number of locations visited associated with the COVID-19 pandemic. In further models, these behaviors were strongly associated with increased interest in COVID fatigue. When mental health metrics (eg, depression and anxiety) were added to the previous measures (week of term, number of locations visited, phone use, sedentary time), both anxiety and depression (P<.001) were significantly associated with interest in COVID fatigue. Notably, these behavioral and mental health changes are consistent with those observed around the initial implementation of COVID-19 lockdowns in the spring of 2020. CONCLUSIONS: In the initial lockdown phase of the COVID-19 pandemic, people spent more time on their phones, were more sedentary, visited fewer locations, and exhibited increased symptoms of anxiety and depression. As the pandemic persisted through the spring, people continued to exhibit very similar changes in both mental health and behaviors. Although these large-scale shifts in mental health and behaviors are unsurprising, understanding them is critical in disrupting the negative consequences to mental health during the ongoing pandemic.
Asunto(s)
Conducta , COVID-19/epidemiología , Evaluación Ecológica Momentánea , Salud Mental/estadística & datos numéricos , Pandemias , Teléfono Inteligente , Estudiantes/psicología , Adolescente , Ansiedad/diagnóstico , Uso del Teléfono Celular/estadística & datos numéricos , Depresión/diagnóstico , Femenino , Humanos , Locomoción , Estudios Longitudinales , Masculino , Aplicaciones Móviles , Conducta Sedentaria , Autoinforme , Sueño , Encuestas y Cuestionarios , Adulto JovenRESUMEN
Although mammals have a strong motivation to engage in social interaction, stress can significantly interfere with this desire. Indeed, research in nonhuman animals has shown that stress reduces social interaction, a phenomenon referred to as "stress-induced social avoidance." While stress and social disconnection are also intertwined in humans, to date, evidence that stress predicts reductions in social interaction is mixed, in part, because existing paradigms fail to capture social interaction naturalistically. To help overcome this barrier, we combined experience sampling and passive mobile sensing methods with time-lagged analyses (i.e., vector autoregressive modeling) to investigate the temporal impact of stress on real-world indices of social interaction. We found that, across a 2-month period, greater perceived stress on a given day predicted significantly decreased social interaction-measured by the amount of face to face conversation-the following day. Critically, the reverse pattern was not observed (i.e., social interaction did not temporally predict stress), and the effect of stress on social interaction was present while accounting for other related variables such as sleep, movement, and time spent at home. These findings are consistent with animal research on stress-induced social avoidance and lay the groundwork for creating naturalistic, mobile-sensing based human models to further elucidate the cycle between stress and real-world social interaction. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Asunto(s)
Conducta Social , Interacción Social , Comunicación , Humanos , Estrés PsicológicoRESUMEN
BACKGROUND: The vast majority of people worldwide have been impacted by coronavirus disease (COVID-19). In addition to the millions of individuals who have been infected with the disease, billions of individuals have been asked or required by local and national governments to change their behavioral patterns. Previous research on epidemics or traumatic events suggests that this can lead to profound behavioral and mental health changes; however, researchers are rarely able to track these changes with frequent, near-real-time sampling or compare their findings to previous years of data for the same individuals. OBJECTIVE: By combining mobile phone sensing and self-reported mental health data among college students who have been participating in a longitudinal study for the past 2 years, we sought to answer two overarching questions. First, have the behaviors and mental health of the participants changed in response to the COVID-19 pandemic compared to previous time periods? Second, are these behavior and mental health changes associated with the relative news coverage of COVID-19 in the US media? METHODS: Behaviors such as the number of locations visited, distance traveled, duration of phone usage, number of phone unlocks, sleep duration, and sedentary time were measured using the StudentLife smartphone sensing app. Depression and anxiety were assessed using weekly self-reported ecological momentary assessments of the Patient Health Questionnaire-4. The participants were 217 undergraduate students, with 178 (82.0%) students providing data during the Winter 2020 term. Differences in behaviors and self-reported mental health collected during the Winter 2020 term compared to previous terms in the same cohort were modeled using mixed linear models. RESULTS: During the first academic term impacted by COVID-19 (Winter 2020), individuals were more sedentary and reported increased anxiety and depression symptoms (P<.001) relative to previous academic terms and subsequent academic breaks. Interactions between the Winter 2020 term and the week of the academic term (linear and quadratic) were significant. In a mixed linear model, phone usage, number of locations visited, and week of the term were strongly associated with increased amount of COVID-19-related news. When mental health metrics (eg, depression and anxiety) were added to the previous measures (week of term, number of locations visited, and phone usage), both anxiety (P<.001) and depression (P=.03) were significantly associated with COVID-19-related news. CONCLUSIONS: Compared with prior academic terms, individuals in the Winter 2020 term were more sedentary, anxious, and depressed. A wide variety of behaviors, including increased phone usage, decreased physical activity, and fewer locations visited, were associated with fluctuations in COVID-19 news reporting. While this large-scale shift in mental health and behavior is unsurprising, its characterization is particularly important to help guide the development of methods to reduce the impact of future catastrophic events on the mental health of the population.
Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/psicología , Evaluación Ecológica Momentánea , Neumonía Viral/psicología , Teléfono Inteligente , Estudiantes/psicología , Adolescente , Adulto , COVID-19 , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Femenino , Humanos , Estudios Longitudinales , Masculino , Salud Mental , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , SARS-CoV-2 , Adulto JovenRESUMEN
BACKGROUND: Across college campuses, the prevalence of clinically relevant depression or anxiety is affecting more than 27% of the college population at some point between entry to college and graduation. Stress and self-esteem have both been hypothesized to contribute to depression and anxiety levels. Although contemporaneous relationships between these variables have been well-defined, the causal relationship between these mental health factors is not well understood, as frequent sampling can be invasive, and many of the current causal techniques are not well suited to investigate correlated variables. OBJECTIVE: This study aims to characterize the causal and contemporaneous networks between these critical mental health factors in a cohort of first-year college students and then determine if observed results replicate in a second, distinct cohort. METHODS: Ecological momentary assessments of depression, anxiety, stress, and self-esteem were obtained weekly from two cohorts of first-year college students for 40 weeks (1 academic year). We used the Peter and Clark Momentary Conditional Independence algorithm to identify the contemporaneous (t) and causal (t-1) network structures between these mental health metrics. RESULTS: All reported results are significant at P<.001 unless otherwise stated. Depression was causally influenced by self-esteem (t-1 rp, cohort 1 [C1]=-0.082, cohort 2 [C2]=-0.095) and itself (t-1 rp, C1=0.388, C2=0.382) in both cohorts. Anxiety was causally influenced by stress (t-1 rp, C1=0.095, C2=0.104), self-esteem (t-1 rp, C1=-0.067, C2=-0.064, P=.002), and itself (t-1 rp, of C1=0.293, C2=0.339) in both cohorts. A causal link between anxiety and depression was observed in the first cohort (t-1 rp, C1=0.109) and only observed in the second cohort with a more liberal threshold (t-1 rp, C2=0.044, P=.03). Self-esteem was only causally influenced by itself (t-1 rp, C1=0.389, C2=0.393). Stress was only causally influenced by itself (t-1 rp, C1=0.248, C2=0.273). Anxiety had positive contemporaneous links to depression (t rp, C1=0.462, C2=0.444) and stress (t rp, C1=0.354, C2=0.358). Self-esteem had negative contemporaneous links to each of the other three mental health metrics, with the strongest negative relationship being stress (t rp, C1=-0.334, C2=-0.340), followed by depression (t rp, C1=-0.302, C2=-0.274) and anxiety (t rp, C1=-0.256, C2=-0.208). Depression had positive contemporaneous links to anxiety (previously mentioned) and stress (t rp, C1=0.250, C2=0.231). CONCLUSIONS: This paper is an initial attempt to describe the contemporaneous and causal relationships among these four mental health metrics in college students. We replicated previous research identifying concurrent relationships between these variables and extended them by identifying causal links among these metrics. These results provide support for the vulnerability model of depression and anxiety. Understanding how causal factors impact the evolution of these mental states over time may provide key information for targeted treatment or, perhaps more importantly, preventative interventions for individuals at risk for depression and anxiety.
RESUMEN
As smartphone usage has become increasingly prevalent in our society, so have rates of depression, particularly among young adults. Individual differences in smartphone usage patterns have been shown to reflect individual differences in underlying affective processes such as depression (Wang et al., 2018). In the current study, a positive relationship was identified between smartphone screen time (e.g., phone unlock duration) and resting-state functional connectivity (RSFC) between the subgenual cingulate cortex (sgCC), a brain region implicated in depression and antidepressant treatment response, and regions of the ventromedial/orbitofrontal cortex (OFC), such that increased phone usage was related to stronger connectivity between these regions. This cluster was subsequently used to constrain subsequent analyses looking at individual differences in depressive symptoms in the same cohort and observed partial replication in a separate cohort. Similar analyses were subsequently performed on metrics of circadian rhythm consistency showing a negative relationship between connectivity of the sgCC and OFC. The data and analyses presented here provide relatively simplistic preliminary analyses which replicate and provide an initial step in combining functional brain activity and smartphone usage patterns to better understand issues related to mental health. Smartphones are a prevalent part of modern life and the usage of mobile sensing data from smartphones promises to be an important tool for mental health diagnostics and neuroscience research.
RESUMEN
BACKGROUND: Stress levels among college students have been on the rise for the last few decades. Currently, rates of reported stress among college students are at an all-time high. Traditionally, the dominant way to assess stress levels has been through pen-and-paper surveys. OBJECTIVE: The aim of this study is to use passive sensing data collected via mobile phones to obtain a rich and potentially less-biased source of data that can be used to help better understand stressors in the college experience. METHODS: We used a mobile sensing app, StudentLife, in tandem with a pictorial mobile phone-based measure of stress, the Mobile Photographic Stress Meter, to investigate the situations and contexts that are more likely to precipitate stress. RESULTS: Using recently developed methods for handling high-dimensional longitudinal data, penalized generalized estimating equations, we identified a set of mobile sensing features (absolute values of beta >0.001 and robust z>1.96) across the domains of social activity, movement, location, and ambient noise that were predictive of student stress levels. CONCLUSIONS: By combining recent statistical methods and mobile phone sensing, we have been able to study stressors in the college experience in a way that is more objective, detailed, and less intrusive than past research. Future work can leverage information gained from passive sensing and use that to develop real-time, targeted interventions for students experiencing a stressful time.