Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Stem Cell Reports ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38876108

RESUMEN

Induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) from patients with amyotrophic lateral sclerosis (ALS) and the C9ORF72 hexanucleotide repeat expansion (HRE) have multiple cellular phenotypes, but which of these accurately reflect the biology underlying the cell-specific vulnerability of ALS is uncertain. We therefore compared phenotypes due to the C9ORF72 HRE in MNs with sensory neurons (SNs), which are relatively spared in ALS. The iPSC models were able to partially reproduce the differential gene expression seen between adult SNs and MNs. We demonstrated that the typical hallmarks of C9ORF72-ALS, including RNA foci and dipeptide formation, as well as specific axonal transport defects, occurred equally in MNs and SNs, suggesting that these in vitro phenotypes are not sufficient to explain the cell-type selectivity of ALS in isolation.

2.
Nat Commun ; 14(1): 8420, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110419

RESUMEN

The GGGGCC hexanucleotide repeat expansion mutation in the chromosome 9 open reading frame 72 (C9orf72) gene is a major genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). In this study, we demonstrate that the zinc finger (ZF) transcriptional regulator Yin Yang 1 (YY1) binds to the promoter region of the planar cell polarity gene Fuzzy to regulate its transcription. We show that YY1 interacts with GGGGCC repeat RNA via its ZF and that this interaction compromises the binding of YY1 to the FuzzyYY1 promoter sites, resulting in the downregulation of Fuzzy transcription. The decrease in Fuzzy protein expression in turn activates the canonical Wnt/ß-catenin pathway and induces synaptic deficits in C9ALS/FTD neurons. Our findings demonstrate a C9orf72 GGGGCC RNA-initiated perturbation of YY1-Fuzzy transcriptional control that implicates aberrant Wnt/ß-catenin signalling in C9ALS/FTD-associated neurodegeneration. This pathogenic cascade provides a potential new target for disease-modifying therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , ARN , beta Catenina/genética , beta Catenina/metabolismo , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Esclerosis Amiotrófica Lateral/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
3.
Nat Commun ; 14(1): 5898, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736756

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, with additional pathophysiological involvement of non-neuronal cells such as microglia. The commonest ALS-associated genetic variant is a hexanucleotide repeat expansion (HRE) mutation in C9orf72. Here, we study its consequences for microglial function using human iPSC-derived microglia. By RNA-sequencing, we identify enrichment of pathways associated with immune cell activation and cyto-/chemokines in C9orf72 HRE mutant microglia versus healthy controls, most prominently after LPS priming. Specifically, LPS-primed C9orf72 HRE mutant microglia show consistently increased expression and release of matrix metalloproteinase-9 (MMP9). LPS-primed C9orf72 HRE mutant microglia are toxic to co-cultured healthy motor neurons, which is ameliorated by concomitant application of an MMP9 inhibitor. Finally, we identify release of dipeptidyl peptidase-4 (DPP4) as a marker for MMP9-dependent microglial dysregulation in co-culture. These results demonstrate cellular dysfunction of C9orf72 HRE mutant microglia, and a non-cell-autonomous role in driving C9orf72-ALS pathophysiology in motor neurons through MMP9 signaling.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Metaloproteinasa 9 de la Matriz/genética , Proteína C9orf72/genética , Microglía , Técnicas de Cocultivo , Lipopolisacáridos , Neuronas Motoras
4.
Sci Transl Med ; 14(662): eabq3215, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103513

RESUMEN

Arginine-rich dipeptide repeat proteins (R-DPRs), abnormal translational products of a GGGGCC hexanucleotide repeat expansion in C9ORF72, play a critical role in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the most common genetic form of the disorders (c9ALS/FTD). R-DPRs form liquid condensates in vitro, induce stress granule formation in cultured cells, aggregate, and sometimes coaggregate with TDP-43 in postmortem tissue from patients with c9ALS/FTD. However, how these processes are regulated is unclear. Here, we show that loss of poly(ADP-ribose) (PAR) suppresses neurodegeneration in c9ALS/FTD fly models and neurons differentiated from patient-derived induced pluripotent stem cells. Mechanistically, PAR induces R-DPR condensation and promotes R-DPR-induced stress granule formation and TDP-43 aggregation. Moreover, PAR associates with insoluble R-DPR and TDP-43 in postmortem tissue from patients. These findings identified PAR as a promoter of R-DPR toxicity and thus a potential target for treating c9ALS/FTD.


Asunto(s)
Demencia Frontotemporal , Arginina , Proteína C9orf72/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dipéptidos/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Poli Adenosina Difosfato Ribosa
5.
Sci Rep ; 12(1): 12606, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871163

RESUMEN

Motor neuron diseases such as amyotrophic lateral sclerosis are primarily characterized by motor neuron degeneration with additional involvement of non-neuronal cells, in particular, microglia. In previous work, we have established protocols for the differentiation of iPSC-derived spinal motor neurons and microglia. Here, we combine both cell lineages and establish a novel co-culture of iPSC-derived spinal motor neurons and microglia, which is compatible with motor neuron identity and function. Co-cultured microglia express key identity markers and transcriptomically resemble primary human microglia, have highly dynamic ramifications, are phagocytically competent, release relevant cytokines and respond to stimulation. Further, they express key amyotrophic lateral sclerosis-associated genes and release disease-relevant biomarkers. This novel and authentic human model system facilitates the study of physiological motor neuron-microglia crosstalk and will allow the investigation of non-cell-autonomous phenotypes in motor neuron diseases such as amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Esclerosis Amiotrófica Lateral/genética , Técnicas de Cocultivo , Humanos , Microglía , Neuronas Motoras
6.
Cell Stem Cell ; 29(1): 11-35, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995492

RESUMEN

Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was among the first of these disorders modeled in patient-specific iPSCs, and recent findings have translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining challenges in exploiting the full potential of iPSC technology for understanding and potentially treating neurodegenerative diseases such as ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Esclerosis Amiotrófica Lateral/terapia , Humanos , Neuroglía , Neuronas
7.
Nat Commun ; 12(1): 6914, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824257

RESUMEN

Mislocalization of the predominantly nuclear RNA/DNA binding protein, TDP-43, occurs in motor neurons of ~95% of amyotrophic lateral sclerosis (ALS) patients, but the contribution of axonal TDP-43 to this neurodegenerative disease is unclear. Here, we show TDP-43 accumulation in intra-muscular nerves from ALS patients and in axons of human iPSC-derived motor neurons of ALS patient, as well as in motor neurons and neuromuscular junctions (NMJs) of a TDP-43 mislocalization mouse model. In axons, TDP-43 is hyper-phosphorylated and promotes G3BP1-positive ribonucleoprotein (RNP) condensate assembly, consequently inhibiting local protein synthesis in distal axons and NMJs. Specifically, the axonal and synaptic levels of nuclear-encoded mitochondrial proteins are reduced. Clearance of axonal TDP-43 or dissociation of G3BP1 condensates restored local translation and resolved TDP-43-derived toxicity in both axons and NMJs. These findings support an axonal gain of function of TDP-43 in ALS, which can be targeted for therapeutic development.


Asunto(s)
Axones/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Inhibición Psicológica , Proteínas Mitocondriales/metabolismo , Unión Neuromuscular/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Animales , Proteína C9orf72/genética , ADN Helicasas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Neuronas Motoras , Enfermedades Neurodegenerativas/tratamiento farmacológico , Unión Neuromuscular/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas Eferentes , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN
8.
Front Cell Neurosci ; 15: 653688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867942

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with complex determinants, including genetic and non-genetic factors. Despite this heterogeneity, a key pathological signature is the mislocalization and aggregation of specific proteins in the cytoplasm, suggesting that convergent pathogenic mechanisms focusing on disturbances in proteostasis are important in ALS. In addition, many cellular processes have been identified as potentially contributing to disease initiation and progression, such as defects in axonal transport, autophagy, nucleocytoplasmic transport, ER stress, calcium metabolism, the unfolded protein response and mitochondrial function. Here we review the evidence from in vitro and in vivo models of C9ORF72 and TDP-43-related ALS supporting a central role in pathogenesis for endoplasmic reticulum stress, which activates an unfolded protein response (UPR), and mitochondrial dysfunction. Disruption in the finely tuned signaling between the ER and mitochondria through calcium ions may be a crucial trigger of mitochondrial deficits and initiate an apoptotic signaling cascade, thus acting as a point of convergence for multiple upstream disturbances of cellular homeostasis and constituting a potentially important therapeutic target.

9.
Neurobiol Dis ; 144: 105050, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32800996

RESUMEN

TDP-43 pathology is a key feature of amyotrophic lateral sclerosis (ALS), but the mechanisms linking TDP-43 to altered cellular function and neurodegeneration remain unclear. We have recently described a mouse model in which human wild-type or mutant TDP-43 are expressed at low levels and where altered stress granule formation is a robust phenotype of TDP-43M337V/- expressing cells. In the present study we use this model to investigate the functional connectivity of human TDP-43 in primary motor neurons under resting conditions and in response to oxidative stress. The interactome of human TDP-43WT or TDP-43M337V was compared by mass spectrometry, and gene ontology enrichment analysis identified pathways dysregulated by the M337V mutation. We found that under normal conditions the interactome of human TDP-43WT was enriched for proteins involved in transcription, translation and poly(A)-RNA binding. In response to oxidative stress, TDP-43WT recruits proteins of the endoplasmic reticulum and endosomal-extracellular transport pathways, interactions which are reduced in the presence of the M337V mutation. Specifically, TDP-43M337V impaired protein-protein interactions involved in stress granule formation including reduced binding to the translation initiation factors Poly(A)-binding protein and Eif4a1 and the endoplasmic reticulum chaperone Grp78. The M337V mutation also affected interactions involved in endosomal-extracellular transport and this this was associated with reduced extracellular vesicle secretion in primary motor neurons from TDP-43M337V/- mice and in human iPSCs-derived motor neurons. Taken together, our analysis highlights a TDP-43 interaction network in motor neurons and demonstrates that an ALS associated mutation may alter the interactome to drive aberrant pathways involved in the pathogenesis of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Redes Reguladoras de Genes , Neuronas Motoras/metabolismo , Estrés Oxidativo , Mapas de Interacción de Proteínas , Esclerosis Amiotrófica Lateral/genética , Animales , Células Cultivadas , Células Madre Embrionarias , Chaperón BiP del Retículo Endoplásmico , Humanos , Ratones , Ratones Transgénicos , Mutación , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética/genética
10.
Hum Mol Genet ; 29(13): 2200-2217, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32504093

RESUMEN

The G4C2 hexanucleotide repeat expansion (HRE) in C9orf72 is the commonest cause of familial amyotrophic lateral sclerosis (ALS). A number of different methods have been used to generate isogenic control lines using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and non-homologous end-joining by deleting the repeat region, with the risk of creating indels and genomic instability. In this study, we demonstrate complete correction of an induced pluripotent stem cell (iPSC) line derived from a C9orf72-HRE positive ALS/frontotemporal dementia patient using CRISPR/Cas9 genome editing and homology-directed repair (HDR), resulting in replacement of the excised region with a donor template carrying the wild-type repeat size to maintain the genetic architecture of the locus. The isogenic correction of the C9orf72 HRE restored normal gene expression and methylation at the C9orf72 locus, reduced intron retention in the edited lines and abolished pathological phenotypes associated with the C9orf72 HRE expansion in iPSC-derived motor neurons (iPSMNs). RNA sequencing of the mutant line identified 2220 differentially expressed genes compared with its isogenic control. Enrichment analysis demonstrated an over-representation of ALS relevant pathways, including calcium ion dependent exocytosis, synaptic transport and the Kyoto Encyclopedia of Genes and Genomes ALS pathway, as well as new targets of potential relevance to ALS pathophysiology. Complete correction of the C9orf72 HRE in iPSMNs by CRISPR/Cas9-mediated HDR provides an ideal model to study the earliest effects of the hexanucleotide expansion on cellular homeostasis and the key pathways implicated in ALS pathophysiology.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/patología , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Expansión de las Repeticiones de ADN/genética , Femenino , Edición Génica , Humanos , Masculino , Neuronas Motoras/patología , Fenotipo , Reparación del ADN por Recombinación/genética
11.
Stem Cell Reports ; 14(5): 892-908, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32330447

RESUMEN

TDP-43 dysfunction is common to 97% of amyotrophic lateral sclerosis (ALS) cases, including those with mutations in C9orf72. To investigate how C9ORF72 mutations drive cellular pathology in ALS and to identify convergent mechanisms between C9ORF72 and TARDBP mutations, we analyzed motor neurons (MNs) derived from induced pluripotent stem cells (iPSCs) from patients with ALS. C9ORF72 iPSC-MNs have higher Ca2+ release after depolarization, delayed recovery to baseline after glutamate stimulation, and lower levels of calbindin compared with CRISPR/Cas9 genome-edited controls. TARDBP iPS-derived MNs show high glutamate-induced Ca2+ release. We identify here, by RNA sequencing, that both C9ORF72 and TARDBP iPSC-MNs have upregulation of Ca2+-permeable AMPA and NMDA subunits and impairment of mitochondrial Ca2+ buffering due to an imbalance of MICU1 and MICU2 on the mitochondrial Ca2+ uniporter, indicating that impaired mitochondrial Ca2+ uptake contributes to glutamate excitotoxicity and is a shared feature of MNs with C9ORF72 or TARDBP mutations.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Calcio/metabolismo , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Calbindinas/metabolismo , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Demencia Frontotemporal/metabolismo , Ácido Glutámico/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Neuronas Motoras/citología , Mutación , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Neurobiol Dis ; 121: 148-162, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30290270

RESUMEN

Mutations in the gene encoding the RNA-binding protein TDP-43 cause amyotrophic lateral sclerosis (ALS), clinically and pathologically indistinguishable from the majority of 'sporadic' cases of ALS, establishing altered TDP-43 function and distribution as a primary mechanism of neurodegeneration. Transgenic mouse models in which TDP-43 is overexpressed only partially recapitulate the key cellular pathology of human ALS, but may also lead to non-specific toxicity. To avoid the potentially confounding effects of overexpression, and to maintain regulated spatio-temporal and cell-specific expression, we generated mice in which an 80 kb genomic fragment containing the intact human TDP-43 locus (either TDP-43WT or TDP-43M337V) and its regulatory regions was integrated into the Rosa26 (Gt(ROSA26)Sor) locus in a single copy. At 3 months of age, TDP-43M337V mice are phenotypically normal but by around 6 months develop progressive motor function deficits associated with loss of neuromuscular junction integrity, leading to a reduced lifespan. RNA sequencing shows that widespread mis-splicing is absent prior to the development of a motor phenotype, though differential expression analysis reveals a distinct transcriptional profile in pre-symptomatic TDP-43M337V spinal cords. Despite the presence of clear motor abnormalities, there was no evidence of TDP-43 cytoplasmic aggregation in vivo at any timepoint. In primary embryonic spinal motor neurons and in embryonic stem cell (ESC)-derived motor neurons, mutant TDP-43 undergoes cytoplasmic mislocalisation, and is associated with altered stress granule assembly and dynamics. Overall, this mouse model provides evidence that ALS may arise through acquired TDP-43 toxicity associated with defective stress granule function. The normal phenotype until 6 months of age can facilitate the study of early pathways underlying ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Neuronas Motoras/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Fuerza de la Mano , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/patología , Mutación , Unión Neuromuscular/patología , Proteínas de Unión al ARN/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante
13.
Brain ; 140(4): 887-897, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334866

RESUMEN

A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/metabolismo , Proteínas/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Transporte Biológico , Proteína C9orf72 , Células COS , Línea Celular , Chlorocebus aethiops , Expansión de las Repeticiones de ADN , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Intrones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Oligonucleótidos Antisentido/farmacología , Linaje , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/patología , Proteínas/genética , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab1/genética
14.
Stem Cells ; 34(8): 2063-78, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27097283

RESUMEN

An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC-derived motor neurons, decreased cell survival is correlated with dysfunction in Ca(2+) homeostasis, reduced levels of the antiapoptotic protein Bcl-2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC-derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063-2078.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Calcio/metabolismo , Expansión de las Repeticiones de ADN/genética , Retículo Endoplásmico/metabolismo , Demencia Frontotemporal/patología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Apoptosis , Caspasa 3/metabolismo , Diferenciación Celular , Reprogramación Celular , Corteza Cerebral/patología , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Retículo Endoplásmico/ultraestructura , Fibroblastos/metabolismo , Fibroblastos/patología , Demencia Frontotemporal/genética , Homeostasis/genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Péptidos/metabolismo , Agregado de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA