Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Adv Mater ; 36(26): e2403803, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598181

RESUMEN

Aqueous zinc-ion batteries are attractive post-lithium battery technologies for grid-scale energy storage because of their inherent safety, low cost and high theoretical capacity. However, their practical implementation in wide-temperature surroundings persistently confronts irregular zinc electrodeposits and parasitic side reactions on metal anode, which leads to poor rechargeability, low Coulombic efficiency and short lifespan. Here, this work reports lamellar nanoporous Cu/Al2Cu heterostructure electrode as a promising anode host material to regulate high-efficiency and dendrite-free zinc electrodeposition and stripping for wide-temperatures aqueous zinc-ion batteries. In this unique electrode, the interconnective Cu/Al2Cu heterostructure ligaments not only facilitate fast electron transfer but work as highly zincophilic sites for zinc nucleation and deposition by virtue of local galvanic couples while the interpenetrative lamellar channels serving as mass transport pathways. As a result, it exhibits exceptional zinc plating/stripping behaviors in aqueous hybrid electrolyte of diethylene glycol dimethyl ether and zinc trifluoromethanesulfonate at wide temperatures ranging from 25 to -30 °C, with ultralow voltage polarizations at various current densities and ultralong lifespan of >4000 h. The outstanding electrochemical properties enlist full cell of zinc-ion batteries constructed with nanoporous Cu/Al2Cu and ZnxV2O5/C to maintain high capacity and excellent stability for >5000 cycles at 25 and -30 °C.

2.
Foods ; 13(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38611413

RESUMEN

Finding stable and bioavailable calcium supplements is crucial for addressing calcium deficiency. In this study, glycated peptide-calcium chelates (WMPHs-COS-Ca) were prepared from walnut meal protein hydrolysates (WMPHs) and chitosan oligosaccharides (COSs) through the Maillard reaction, and the structural properties and stability of the WMPHs-COS-Ca were characterized. The results showed that WMPHs and COSs exhibited high binding affinities, with a glycation degree of 64.82%. After glycation, Asp, Lys, and Arg decreased by 2.07%, 0.46%, and 1.06%, respectively, which indicated that these three amino acids are involved in the Maillard reaction. In addition, compared with the WMPHs, the emulsifying ability and emulsion stability of the WMPHs-COS increased by 10.16 mg2/g and 52.73 min, respectively, suggesting that WMPHs-COS have better processing characteristics. After chelation with calcium ions, the calcium chelation rate of peptides with molecular weights less than 1 kDa was the highest (64.88%), and the optimized preparation conditions were 5:1 w/w for WMPH-COS/CaCl2s, with a temperature of 50 °C, a chelation time of 50 min, and a pH of 7.0. Scanning electron microscopy showed that the "bridging role" of WMPHs-COS changed to a loose structure. UV-vis spectroscopy and Fourier transform infrared spectrometry results indicated that the amino nitrogen atoms, carboxyl oxygen atoms, and carbon oxygen atoms in WMPHs-COS chelated with calcium ions, forming WMPHs-COS-Ca. Moreover, WMPHs-COS-Ca was relatively stable at high temperatures and under acidic and alkaline environmental and digestion conditions in the gastrointestinal tract, indicating that WMPHs-COS-Ca have a greater degree of bioavailability.

3.
Small ; : e2311509, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587968

RESUMEN

Developing robust non-platinum electrocatalysts with multifunctional active sites for pH-universal hydrogen evolution reaction (HER) is crucial for scalable hydrogen production through electrochemical water splitting. Here ultra-small ruthenium-nickel alloy nanoparticles steadily anchored on reduced graphene oxide papers (Ru-Ni/rGOPs) as versatile electrocatalytic materials for acidic and alkaline HER are reported. These Ru-Ni alloy nanoparticles serve as pH self-adaptive electroactive species by making use of in situ surface reconstruction, where surface Ni atoms are hydroxylated to produce bifunctional active sites of Ru-Ni(OH)2 for alkaline HER, and selectively etched to form monometallic Ru active sites for acidic HER, respectively. Owing to the presence of Ru-Ni(OH)2 multi-site surface, which not only accelerates water dissociation to generate reactive hydrogen intermediates but also facilitates their recombination into hydrogen molecules, the self-supported Ru90Ni10/rGOP hybrid electrode only takes overpotential of as low as ≈106 mV to deliver current density of 1000 mA cm-2, and maintains exceptional stability for over 1000 h in 1 m KOH. While in 0.5 m H2SO4, the Ru90Ni10/rGOP hybrid electrode exhibits acidic HER catalytic behavior comparable to commercially available Pt/C catalyst due to the formation of monometallic Ru shell. These electrochemical behaviors outperform some of the best Ru-based catalysts and make it attractive alternative to Pt-based catalysts toward highly efficient HER.

4.
Food Chem ; 446: 138856, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430765

RESUMEN

In this study, we examined the effects of various sodium alginate (ALG) concentrations (0.2%-0.8%) on the functional and physicochemical characteristics of succinylated walnut glutenin (GLU-SA). The results showed that acylation decreased the particle size and zeta potential of walnut glutenin (GLU) by 122- and 0.27-fold, respectively. In addition, the protein structure unfolded, providing conditions for glycosylation. After GLU-SA was combined with ALG, the surface hydrophobicity decreased and the net negative charge and disulfide bond content increased. The protein structure was analyzed by FTIR, Endogenous fluorescence spectroscopy, and SEM, and ALG prompted GLU-SA cross-linking to form a stable three-dimensional network structure. The results indicated that dual modification improved the functional properties of the complex, especially its potential protein gel and emulsifying properties. This research provide theoretical support and a technical reference for expanding the application of GLU in the processing of protein and oil products.


Asunto(s)
Juglans , Juglans/química , Glicosilación , Glútenes/química , Nueces/química
5.
Foods ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338535

RESUMEN

In recent years, green and healthy foods have attracted much attention. Plant-based foods have become an alternative to animal-derived foods. In this study, we used walnut and purple rice as the primary raw materials to produce a fermented plant drink. The process included boiling, mixing, grinding, inoculation, fermentation, and sterilization. We then analyzed the similarities and differences between the resulting walnut and purple rice fermented plant drink and an unfermented walnut and purple rice plant drink, as well as dairy-based yoghurt, in terms of physical chemistry, flavor, and sensory characteristics. We also examined the similarities and differences between the walnut and purple rice fermented plant drink and room-temperature yoghurt. The study results revealed that the walnut and purple rice fermented plant drink exhibited greater viscosity than the walnut and purple rice unfermented plant drink and room-temperature yoghurt. Additionally, the former displayed enhanced stability and recovery ability. Notably, distinguishable differences were observed between the three samples in terms of the presence of unknown volatiles and the umami signal, as indicated by electronic nose/tongue and GC-IMS analyses. The umami flavor of the walnut and purple rice fermented plant drink surpasses that of room-temperature yoghurt, while its taste is less salty than that of the walnut and purple rice plant drink. Despite possessing a weaker aroma than dairy-based yogurt, it is more potent than the walnut and purple rice plant drink. Additionally, its relative abundance of olefins, ketones, and alcohols enhances its unique flavor profile, surpassing both other options. Based on sensory analysis, it can be deduced that walnut and purple rice fermented plant drink has the highest overall acceptance rate.

6.
Angew Chem Int Ed Engl ; 63(1): e202315238, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37953400

RESUMEN

Ambient electrochemical ammonia (NH3 ) synthesis is one promising alternative to the energy-intensive Haber-Bosch route. However, the industrial requirement for the electrochemical NH3 production with amperes current densities or gram-level NH3 yield remains a grand challenge. Herein, we report the high-rate NH3 production via NO2 - reduction using the Cu activated Co electrode in a bipolar membrane (BPM) assemble electrolyser, wherein BPM maintains the ion balance and the liquid level of electrolyte. Benefited from the abundant Co sites and optimal structure, the target modified Co foam electrode delivers a current density of 2.64 A cm-2 with the Faradaic efficiency of 96.45 % and the high NH3 yield rate of 279.44 mg h-1 cm-2 in H-type cell using alkaline electrolyte. Combined with in situ experiments and theoretical calculations, we found that Cu optimizes the adsorption behavior of NO2 - and facilitates the hydrogenation steps on Co sites toward a rapid NO2 - reduction process. Importantly, this activated Co electrode affords a large NH3 production up to 4.11 g h-1 in a homemade reactor, highlighting its large-scale practical feasibility.

7.
Small ; 20(13): e2308246, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967357

RESUMEN

Electrochemical nitrate reduction reaction (NO3RR) has recently emerged as a promising approach for sustainable ammonia synthesis and wastewater treatment, while the activity and selectivity for ammonia production have remained low. Herein, rational design and controllable synthesis of heterostructured Co-doped Cu2O/Cu nanoparticles embedded in carbon framework (Co-Cu2O/Cu@C) is reported for NO3RR. The Co-Cu2O/Cu@C exhibits a high ammonia yield rate of 37.86 mg h-1 mg-1 cat. with 98.1% Faraday efficiency, which is higher than those obtained for most of the Cu-based catalysts under similar conditions. Density functional theory calculations indicated that the strong electronic interactions at Cu/Co-Cu2O interface facilitate the N species deoxygenation process and doping of Co promotes water dissociation to generate *H for the N species hydrogenation process, leading to enhanced NO3RR performance. This work provides a new design strategy toward high-performance catalysts toward NO3RR for ammonia generation.

8.
Wound Repair Regen ; 32(1): 55-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38113346

RESUMEN

Dendrobium officinale Kinura et Migo (DOKM) has a variety of medicinal applications; however, its ability to promote wound healing has not been previously reported. The purpose of this study is to investigate the proliferative phase of the wound-healing effect of DOKM glycoprotein (DOKMG) in rats and to elucidate its mechanism of action in vitro. In the present study, the ointment mixture containing DOKMG was applied to the dorsal skin wounds of the full-thickness skin excision rat model, and the results showed that the wound healing speed was faster in the proliferative phase than vaseline. Histological analysis demonstrates that DOKMG promoted the re-epithelialization of wound skin. Immunofluorescence staining and quantitative polymerase chain reaction assays revealed that DOKMG promotes the secretion of Fibronectin and inhibits the secretion of Collagen IV during the granulation tissue formation period, indicating that DOKMG could accelerate the formation of granulation tissue by precisely regulating extracellular matrix (ECM) secretion. In addition, we demonstrated that DOKMG enhanced the migration and proliferation of fibroblast (3T6 cell) in two-dimensional trauma by regulating the secretion of ECM, via a mechanism that may implicate the AKT and JAK/STAT pathways under the control of epidermal growth factor receptor (EGFR) signalling. In summary, we have demonstrated that DOKMG promotes wound healing during the proliferative phase. Therefore, we suggest that DOKMG may have a potential therapeutic application for the treatment and management of cutaneous wounds.


Asunto(s)
Dendrobium , Traumatismos de los Tejidos Blandos , Ratas , Animales , Cicatrización de Heridas/fisiología , Piel/patología , Matriz Extracelular/metabolismo , Traumatismos de los Tejidos Blandos/patología , Proliferación Celular , Glicoproteínas/farmacología , Fibroblastos
9.
Adv Mater ; 35(41): e2303455, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37363875

RESUMEN

Ammonia (NH3 ) is essential for modern agriculture and industry, and, due to its high hydrogen density and no carbon emission, it is also expected to be the next-generation of "clean" energy carrier. Herein, directly from air and water, a plasma-electrocatalytic reaction system for NH3 production, which combines two steps of plasma-air-to-NOx - and electrochemical NOx - reduction reaction (eNOx RR) with a bifunctional catalyst, is successfully established. Especially, the bifunctional catalyst of CuCo2 O4 /Ni can simultaneously promote plasma-air-to-NOx - and eNOx RR processes. The easy adsorption and activation of O2 by CuCo2 O4 /Ni greatly improve the NOx - production rate at the first step. Further, CuCo2 O4 /Ni can also resolve the overbonding of the key intermediate of * NO, and thus reduce the energy barrier of the second step of eNOx RR. Finally, the "green" NH3 production achieves excellent FENH3 (96.8%) and record-high NH3 yield rate of 145.8 mg h-1  cm-2 with large partial current density (1384.7 mA cm-2 ). Moreover, an enlarged self-made H-type electrolyzer improves the NH3 yield to 3.6 g h-1 , and the obtained NH3 is then rapidly converted to a solid of magnesium ammonium phosphate hexahydrate, which favors the easy storage and transportation of NH3 .

10.
Nat Commun ; 14(1): 2319, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087491

RESUMEN

Potassium oxide (K2O) is used as a promotor in industrial ammonia synthesis, although metallic potassium (K) is better in theory. The reason K2O is used is because metallic K, which volatilizes around 400 °C, separates from the catalyst in the harsh ammonia synthesis conditions of the Haber-Bosch process. To maximize the efficiency of ammonia synthesis, using metallic K with low temperature reaction below 400 °C is prerequisite. Here, we synthesize ammonia using metallic K and Fe as a catalyst via mechanochemical process near ambient conditions (45 °C, 1 bar). The final ammonia concentration reaches as high as 94.5 vol%, which was extraordinarily higher than that of the Haber-Bosch process (25.0 vol%, 450 °C, 200 bar) and our previous work (82.5 vol%, 45 °C, 1 bar).

11.
Nat Commun ; 14(1): 1811, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002220

RESUMEN

Developing robust nonprecious-metal electrocatalysts with high activity towards sluggish oxygen-evolution reaction is paramount for large-scale hydrogen production via electrochemical water splitting. Here we report that self-supported laminate composite electrodes composed of alternating nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride (FeCo/CeO2-xNx) heterolamellas hold great promise as highly efficient electrocatalysts for alkaline oxygen-evolution reaction. By virtue of three-dimensional nanoporous architecture to offer abundant and accessible electroactive CoFeOOH/CeO2-xNx heterostructure interfaces through facilitating electron transfer and mass transport, nanoporous FeCo/CeO2-xNx composite electrodes exhibit superior oxygen-evolution electrocatalysis in 1 M KOH, with ultralow Tafel slope of ~33 mV dec-1. At overpotential of as low as 360 mV, they reach >3900 mA cm-2 and retain exceptional stability at ~1900 mA cm-2 for >1000 h, outperforming commercial RuO2 and some representative oxygen-evolution-reaction catalysts recently reported. These electrochemical properties make them attractive candidates as oxygen-evolution-reaction electrocatalysts in electrolysis of water for large-scale hydrogen generation.

12.
ChemSusChem ; 15(19): e202201189, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35924949

RESUMEN

Electrocatalytic nitrogen reduction reaction (NRR) is a promising technique to resolve the carbon emission in energy-intensive ammonia production in industry, which, however, is hampered by the lack of efficient catalysts. Herein, by density functional theory (DFT) calculations, it was demonstrated that the twin boundary (TB) of copper could effectively relieve the N2 activation barrier in NRR. The d orbitals overlapping mode on twin boundary edge (TBE) was quite different from that on its basal plane, where the dxz , dyz orbitals induced unbalanced electron occupation states in π*-px , py orbitals of the adsorbed N2 , which could effectively activate the N≡N bond. Particularly, doping transition metals (TMs) onto Cu-TBE could further improve its NRR catalytic behavior, and the Re-Cu(111)-TBE showed the lowest limiting potential (UL ) of -0.27 V among 25 considered TMs. Moreover, the Re-Cu(111)-TBE could effectively suppress the competing hydrogen evolution reaction even under working potentials. This work has provided a deep understanding of TB in catalysis from an electronic structure point of view, paving a way for further studies of TB into advanced utilization.

13.
Chem Commun (Camb) ; 58(74): 10290-10302, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36043384

RESUMEN

Ammonia (NH3) is essential for the industrial production of fertilizers, pharmaceuticals, plastics, synthetic fibers, resins, and chemicals, and it is also a promising carbon-free energy carrier. The electrocatalytic nitrogen reduction reaction (eNRR) driven by renewable energy sources at ambient temperature and atmospheric pressure is an alternative approach to the Haber-Bosch process for NH3 synthesis. However, the efficient electrocatalytic reduction of nitrogen (N2) to NH3 is challenging due to the lack of effective electrocatalysts. Tremendous effort has been made to develop high-performance electrocatalysts for the eNRR in the past few years. In this review, we summarize recent progress relating to electrocatalysts for the eNRR from both theoretical and experimental aspects. Remaining challenges and perspectives for promoting the eNRR to generate NH3 are also discussed. This review hopes to guide the design and development of efficient electrocatalysts for the eNRR for NH3 synthesis.

14.
Open Med (Wars) ; 17(1): 353-364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799601

RESUMEN

Blood-brain barrier participates in the pathological process of ischemic stroke. MicroRNA-29c-5p was highly expressed in clinical samples from patients with ischemic stroke. In this study, oxygen-glucose deprivation (OGD) treatment of astrocytes enhanced the permeability of brain microvascular endothelial cells (BMECs), and the miR-29c-5p expression was elevated in clinical samples from patients with ischemic stroke. For the function of miR-29c-5p in ischemic stroke, the miR-29c-5p knockdown decreased the permeability and the tight junction protein (TJP) destruction of BMECs and ameliorated the inflammation induced by OGD-treated astrocytes. Mechanistically, miR-29c-5p interacted with lipoprotein receptor-related protein 6 (LRP6) and negatively regulated the LRP6 expression in astrocytes. Moreover, the rescue assays indicated that the interference with miR-29c-5p ameliorated the TJP destruction of BMECs and inflammation caused by OGD-treated astrocytes by increasing the LRP6 expression. Together, miR-29c-5p knockdown decreased the high permeability and the TJP destruction of BMECs and ameliorated the inflammation induced by OGD-treated astrocytes by elevating LRP6 expression.

15.
Pacing Clin Electrophysiol ; 45(7): 821-825, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35695257

RESUMEN

BACKGROUND: Lambl's excrescences (LEs) are excrescences with an extremely low incidence, mainly ultrasound diagnosed. Increasingly, LEs are detected by transesophageal echocardiography before catheter ablation, which raises safety concerns on whether LEs were associated with an embolism event during or after ablation, but clinical data are still lacking. METHODS AND RESULTS: We consecutively recruited 8081 patients with atrial fibrillation who underwent radiofrequency catheter ablation in Beijing Anzhen Hospital from Jan 1, 2017 to Dec 31, 2019. Total 21 patients (0.3%) were diagnosed as LEs with an average age of 70.8 ± 8.9 years, and 38.1% were male. Persistent atrial fibrillation (PeAF) and paroxysmal atrial fibrillation (PAF) accounted for 57.1% (12 cases) and 42.9% (nine cases), respectively. LEs were mostly frequently observed on the aortic valve (18 cases, 75%) and mitral valve (six cases, 25%). Precisely, the noncoronary cusp is ranked first in terms of the LEs presence (seven cases, 29.2%), followed by the right coronary cusp (six cases, 25.0%), the left coronary cusp (five cases, 20.8%), the anterior mitral valve (four cases, 16.7%), and the posterior mitral valve (two cases, 8.3%). During the ablation for LEs patients, the average procedure time was 96.0 ± 22.4 min; the average fluoroscopy time was 4.2 ± 0.8 min; the average total ablation time was 20.6 ± 5.6 min; and the mean hospital stay was 3.3 ± 0.6 days. No patients suffered from serious complications during the procedure. Furthermore, no cardiovascular event was observed during a follow-up of 19.1 ± 11.8 months. CONCLUSIONS: There was no clear association between LEs with intraoperative embolism events or cardiovascular events during the follow-up period.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Enfermedades de las Válvulas Cardíacas , Anciano , Válvula Aórtica/cirugía , Fibrilación Atrial/complicaciones , Fibrilación Atrial/cirugía , Ablación por Catéter/métodos , Ecocardiografía Transesofágica , Femenino , Enfermedades de las Válvulas Cardíacas/cirugía , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
16.
Nanomicro Lett ; 14(1): 128, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35699828

RESUMEN

Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.

17.
J Colloid Interface Sci ; 613: 94-102, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35032780

RESUMEN

Hydrogel-based wearable sensors have gained great interest on account of their huge application in human-machine interfaces, electronic skin, and healthcare monitoring. However, there are still challenges in designing hydrogel-based sensors with high stability in a wide temperature range, superior adhesion, and excellent sensitivity. Herein, sensors based on oxidized sodium alginate (OSA)/polyacrylamide (PAm)/polydopamine-Ti3C2TX (PMXene) /glycerol/water (Gly/H2O) organohydrogels were designed. The organohydrogels exhibited excellent mechanical properties (elongation at break of 1037%, tensile strength of 0.17 MPa), predominant self-healing ability (self-healing efficiency of 91%), as well as high sensing stability in a wide temperature range (from -20 to 60°C). The introduction of PDA (polydopamine) and viscous glycerin (Gly) provide organohydrogels with superior adhesion. Organohydrogels sensors demonstrated high sensitivity (Gauge Factor, GF = 2.2) due to the combination of ionic and electron conduction. Sensors could stably detect human movement under different strain levels at high and low temperatures, providing a new solution for wearable sensors in extreme conditions.


Asunto(s)
Adhesivos , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Humanos , Hidrogeles , Temperatura , Titanio
18.
Mol Nutr Food Res ; 66(1): e2100408, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34708542

RESUMEN

SCOPE: The proliferation and differentiation of intestinal stem cells (ISCs) are the basis of intestinal renewal and regeneration, and gut microbiota plays an important role in it. Dietary nutrition has the effect of regulating the activity of ISCs; however, the regulation effect of α-linolenic acid (ALA) has seldom been reported. METHODS AND RESULTS: After intervening mice with different doses of ALA for 30 days, it is found that ALA (0.5 g kg-1 ) promotes small intestinal and villus growth by activating the Wnt/ß-catenin signaling pathway to stimulate the proliferation of ISCs. Furthermore, ALA administration increases the abundance of the Ruminococcaceae and Prevotellaceae, and promotes the production of short-chain fatty acids (SCFAs). Subsequent fecal transplantation and antibiotic experiments demonstrate that ALA on the proliferation of ISCs are gut microbiota dependent, among them, the functional microorganism may be derived from Ruminococcaceae. Administration of isobutyrate shows a similar effect to ALA in terms of promoting ISCs proliferation. Furthermore, ALA mitigates 5-fluorouracil-induced intestinal mucosal damage by promoting ISCs proliferation. CONCLUSION: These results indicate that SCFAs produced by Ruminococcaceae mediate ALA promote ISCs proliferation by activating the Wnt/ß-catenin signaling pathway, and suggest the possibility of ALA as a prebiotic agent for the prevention and treatment of intestinal mucositis.


Asunto(s)
Intestinos , Ácido alfa-Linolénico , Animales , Proliferación Celular , Ácidos Grasos Volátiles/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Células Madre/fisiología , Ácido alfa-Linolénico/metabolismo , Ácido alfa-Linolénico/farmacología
19.
OMICS ; 25(11): 738-744, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34714146

RESUMEN

Trisomy 21 is a common birth defect in humans. Screening for trisomy 21 is one of the most important tasks in routine prenatal care and robust noninvasive diagnostics are needed in clinical practice. Urinary proteomics offers a new research platform for diagnostics innovation in this context. We report here new biomarker candidates using urinary proteomics profiling. Specifically, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze the proteomes of urine samples from 19 pregnant women (aged 28-44 years) carrying fetuses with trisomy 21 and 22 healthy pregnant women (aged 27-42 years) carrying fetuses with normal karyotype. We identified more than 50 differentially expressed proteins between the trisomy 21 group and healthy group, and most of these proteins were associated with the embryonic development. Importantly, tissue inhibitor of metalloproteinases 2 (TIMP2) and lysosomal-associated membrane protein 2 (LAMP2) were further selected as potential urinary protein biomarkers. We found that the combination of TIMP2 and LAMP2 could differentiate fetuses with trisomy 21 from healthy controls with a sensitivity of 74%, a specificity of 82%, and an area under the receiver operating characteristic curves (AUC) value of 0.82 (95% confidence interval, 0.69-0.95). We conclude that TIMP2 and LAMP2 offer promise as biomarker candidates and warrant further clinical research in larger study samples. These findings further our understanding of the pathological processes involved in fetal trisomy 21 and are poised to accelerate the development of new noninvasive potential biomarkers for trisomy 21 prenatal screening.


Asunto(s)
Síndrome de Down , Pruebas Prenatales no Invasivas , Biomarcadores , Cromatografía Liquida , Síndrome de Down/diagnóstico , Femenino , Humanos , Embarazo , Diagnóstico Prenatal , Proteómica , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA