Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4953, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858363

RESUMEN

Nonreciprocal quantum transport effect is mainly governed by the symmetry breaking of the material systems and is gaining extensive attention in condensed matter physics. Realizing electrical switching of the polarity of the nonreciprocal transport without external magnetic field is essential to the development of nonreciprocal quantum devices. However, electrical switching of superconducting nonreciprocity remains yet to be achieved. Here, we report the observation of field-free electrical switching of nonreciprocal Ising superconductivity in Fe3GeTe2/NbSe2 van der Waals (vdW) heterostructure. By taking advantage of this electrically switchable superconducting nonreciprocity, we demonstrate a proof-of-concept nonreciprocal quantum neuronal transistor, which allows for implementing the XOR logic gate and faithfully emulating biological functionality of a cortical neuron in the brain. Our work provides a promising pathway to realize field-free and electrically switchable nonreciprocity of quantum transport and demonstrate its potential in exploring neuromorphic quantum devices with both functionality and performance beyond the traditional devices.

2.
Nat Mater ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664497

RESUMEN

In situ tailoring of two-dimensional materials' phases under external stimulus facilitates the manipulation of their properties for electronic, quantum and energy applications. However, current methods are mainly limited to the transitions among phases with unchanged chemical stoichiometry. Here we propose on-device phase engineering that allows us to realize various lattice phases with distinct chemical stoichiometries. Using palladium and selenide as a model system, we show that a PdSe2 channel with prepatterned Pd electrodes can be transformed into Pd17Se15 and Pd4Se by thermally tailoring the chemical composition ratio of the channel. Different phase configurations can be obtained by precisely controlling the thickness and spacing of the electrodes. The device can be thus engineered to implement versatile functions in situ, such as exhibiting superconducting behaviour and achieving ultralow-contact resistance, as well as customizing the synthesis of electrocatalysts. The proposed on-device phase engineering approach exhibits a universal mechanism and can be expanded to 29 element combinations between a metal and chalcogen. Our work highlights on-device phase engineering as a promising research approach through which to exploit fundamental properties as well as their applications.

3.
Nat Commun ; 15(1): 1129, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321042

RESUMEN

The spin Hall effect (SHE) allows efficient generation of spin polarization or spin current through charge current and plays a crucial role in the development of spintronics. While SHE typically occurs in non-magnetic materials and is time-reversal even, exploring time-reversal-odd (T-odd) SHE, which couples SHE to magnetization in ferromagnetic materials, offers a new charge-spin conversion mechanism with new functionalities. Here, we report the observation of giant T-odd SHE in Fe3GeTe2/MoTe2 van der Waals heterostructure, representing a previously unidentified interfacial magnetic spin Hall effect (interfacial-MSHE). Through rigorous symmetry analysis and theoretical calculations, we attribute the interfacial-MSHE to a symmetry-breaking induced spin current dipole at the vdW interface. Furthermore, we show that this linear effect can be used for implementing multiply-accumulate operations and binary convolutional neural networks with cascaded multi-terminal devices. Our findings uncover an interfacial T-odd charge-spin conversion mechanism with promising potential for energy-efficient in-memory computing.

4.
Front Cardiovasc Med ; 9: 1035659, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465469

RESUMEN

Introduction: Current evidence indicates endovascular intervention is a safe and effective treatment for peripheral artery disease of the lower extremity. However, the clinical outcome of endovascular intervention for femoropopliteal lesions has been shown to be affected by the status of tibial runoff. It remains unclear whether endovascular intervention for tibial runoff is associated with additional benefits. Methods and analysis: This prospective, multicenter, real-world observational study is carried out from January 2021 to December 2022 in 8 designated centers across China with an estimated sample size of 1200 patients with severe femoropopliteal disease. The pre-procedural status of tibial runoff is evaluated with the modified SVS score and categorized as good (SVS <5), compromised (SVS 5-10) or poor (SVS >10). Whether the patient will be treated with endovascular intervention for tibial runoff is determined by the treating vascular surgeons. Patients are dichotomized into the intervention group and the non-intervention group, with each group further divided into the good, compromised and poor tibial run-off subgroup, yielding 6 subgroups in total. Patients within various subgroups are compared with regard to the primary patency rate of the femoropopliteal artery, changes in quality of life, changes of Rutherford category, improvement of the Wound, Ischemia, and Foot Infection Classification, and incidence of major adverse events over 24-months follow-up. The results of this study may provide important information to help vascular sspecialists to decide whether the tibial runoff should be endovascularly intervened and which patient population benefits most from tibial runoff intervention. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04675632?id=NCT04675632&draw=2&rank=1, NCT04675632.

5.
Sci Adv ; 8(49): eabq6833, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490344

RESUMEN

The building block of in-memory computing with spintronic devices is mainly based on the magnetic tunnel junction with perpendicular interfacial anisotropy (p-MTJ). The resulting asymmetric write and readout operations impose challenges in downscaling and direct cascadability of p-MTJ devices. Here, we propose that a previously unimplemented symmetric write and readout mechanism can be realized in perpendicular-anisotropy spin-orbit (PASO) quantum materials based on Fe3GeTe2 and WTe2. We demonstrate that field-free and deterministic reversal of the perpendicular magnetization can be achieved using unconventional charge-to-z-spin conversion. The resulting magnetic state can be readily probed with its intrinsic inverse process, i.e., z-spin-to-charge conversion. Using the PASO quantum material as a fundamental building block, we implement the functionally complete set of logic-in-memory operations and a more complex nonvolatile half-adder logic function. Our work highlights the potential of PASO quantum materials for the development of scalable energy-efficient and ultrafast spintronic computing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA